
DupFinder: Integrated Tool Support for Duplicate Bug
Report Detection

Ferdian Thung, Pavneet Singh Kochhar, and David Lo
School of Information Systems

Singapore Management University
{ferdiant.2013,kochharps.2012,davidlo}@smu.edu.sg

ABSTRACT
To track bugs that appear in a software, developers often
make use of a bug tracking system. Users can report bugs
that they encounter in such a system. Bug reporting is in-
herently an uncoordinated distributed process though and
thus when a user submits a new bug report, there might be
cases when another bug report describing exactly the same
problem is already present in the system. Such bug reports
are duplicate of each other and these duplicate bug reports
need to be identified. A number of past studies have pro-
posed a number of automated approaches to detect duplicate
bug reports. However, these approaches are not integrated
to existing bug tracking systems. In this paper, we propose a
tool named DupFinder, which implements the state-of-the-
art unsupervised duplicate bug report approach by Runeson
et al., as a Bugzilla extension. DupFinder does not require
any training data and thus can easily be deployed to any
project. DupFinder extracts texts from summary and de-
scription fields of a new bug report and recent bug reports
present in a bug tracking system, uses vector space model to
measure similarity of bug reports, and provides developers
with a list of potential duplicate bug reports based on the
similarity of these reports with the new bug report. We have
released DupFinder as an open source tool in GitHub, which
is available at: https://github.com/smagsmu/dupfinder.

Categories and Subject Descriptors: D.2.7 [Software]:
Software Engineering – Distribution, Maintenance, and En-
hancement

General Terms: Management; Reliability

Keywords: Bugzilla; Duplicate bug reports; Integrated
tool support

1. INTRODUCTION
Bug tracking systems like Bugzilla are used by a large

number of developers and organisations to track bugs related
to their projects. Well-known projects contain large number
of bug reports as they have a big user base, who report

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2648627.

issues they encounter while using the software. When a
user logs a bug report, there might be cases when another
bug report describing the same problem has already been
reported earlier by other users. In such cases, this new bug
report is a duplicate bug report. Usually, projects have bug
triagers who check for duplicate bug reports. The number
of bug reports reported daily however can be too large for
triagers to handle. Anvik et al. quoted a Mozilla developer
who commented that “Everyday, almost 300 bugs appear
that need triaging. This is far too much for only the Mozilla
programmers to handle”. This highlights the need for an
automated tool support to help detect and prevent duplicate
bug reports.

Researchers have proposed several techniques to address
the issue of duplicate bug reports. These techniques can
be categorized into two families: unsupervised and super-
vised. Runeson et al. propose an unsupervised technique
that takes a new bug report and returns a ranked list of top-
k most similar reports to help detect duplicate reports [8].
Being an unsupervised technique, Runeson et al.’s approach
does not require any training data and thus can be used
for any bug tracking systems even those with a small num-
ber of bug reports. There are also a number of supervised
techniques proposed in the literature which require a set of
training data (i.e., sets of bug reports that are known to be
duplicate of one another). For example, Jalbert and Weimer
propose a technique to automatically classify bug reports as
duplicate or not using a classifier learned from a training
data [2]. Also, Sun et al. propose a retrieval function which
uses textual content from summary and description and non-
textual fields such as product, component etc. to measure
the similarity between bug reports [9]. Sun et al.’s approach
eventually produces a ranked list of bug reports that are
deemed to be most similar to a new bug report. It makes
use of a training data to tune the weights of the various fields
to achieve a higher accuracy.

Each of the above studies have been evaluated on a large
number of bug reports and shown to be effective. However,
since their implementations are only proof of concepts, the
implementations are often minimal and have not been de-
signed with actual deployment picture in mind. None of the
implementations are actually integrated to an existing bug
tracking system. Thus, practitioners cannot download and
use these techniques to deal with the problem of duplicate
bug reports that they encounter in their day-to-day devel-
opment practice.

To address the above problem, we develop a tool
DupFinder, which is implemented as a Bugzilla extension,

871

to search for duplicate bug reports. Our goal is not to design
a new algorithm but rather to implement an existing tech-
nique into a tool integrated to a bug tracking system that
can be used by practitioners to help them deal with duplicate
bug report problem. Our tool is based on the unsupervised
technique proposed by Runeson et al. [8]. It uses a vector
space model to represent a bug report. It then compares the
vector space model representation of a new bug report with
existing bug reports to get a list of similar bug reports. As
a user enters text in the summary or description fields of a
new bug report, our tool calculates similarity between the
entered text and existing bug reports and returns the top
bug reports that are most similar to the text.

The structure of the remainder of this paper is as follows.
In Section 2, we briefly describe Bugzilla and vector space
model. In Section 3, we describe our tool DupFinder. Re-
lated work is presented in Section 4. Section 5 concludes
and describes future work.

2. PRELIMINARIES
In this section, we first briefly describe Bugzilla, a bug

tracking system on which our tool is build upon. Next, we
describe vector space model (VSM), the model which we use
to calculate similarity between bug reports.

2.1 Bugzilla
Bugzilla1 is a web-based bug tracker. Users can report

new bugs and developers can track the status of bugs that
are reported. It is used by well-known organisations such as
Mozilla and Apache and open-source projects such as Eclipse
and LibreOffice.

A bug report in Bugzilla contains a number of fields such
as bug id, product, component, assignee, summary and de-
scription. Each of them carries a piece of information. In
this work, we are interested in the following two textual
fields: (1) summary, (2) description. Summary is a short
synopsis of a bug, while description is a longer text that
elaborates the bug.

2.2 Vector Space Model
To apply vector space model, a textual document is first

pre-processed. The pre-processed text is then converted into
a representation in the form of a vector of weights. The
similarity of two documents can be computed by comparing
their representative vectors.

Text Preprocessing: Text preprocessing is an important
task in information retrieval. There are three common text
preprocessing steps: tokenization, stop word removal, and
stemming. At the end of these steps, each bug report is
represented as a bag (i.e., multi-set) of words.

In the tokenization step, we remove special symbols, punc-
tuation marks, and number literals from bug reports. In the
stop word removal step, we remove the commonly occurring
English words such as “I”, “you”, “we’,’ etc. from the bug
reports as most of them carry little meaning. We use the
stop word list from Lingua::StopWords module in Compre-
hensive Perl Archive Network (CPAN)2. In the stemming
step, we reduce all words to their root form. For example,
we reduce “mapping”, “mapped”, and “maps” to “map”. To

1http://www.bugzilla.org/
2http://www.cpan.org/

do this, we apply the well known Porter stemming algorithm
and use Lingua::Stem module implementation from CPAN.

Representation and Similarity Vector Space Model rep-
resents a document as a vector of weights, where each weight
corresponds to a word in the document. The weight of each
word is usually computed using the product of its term fre-
quency and its inverse document frequency, following the
standard tf-idf weighting scheme [6]. The following is the tf-
idf weight of word w in document d given a set of documents
D (denoted as tf-idf(w, d,D)):

tf-idf(w, d,D) = f(w, d)× log
| D |

| {di|w ∈ di ∧ di ∈ D} |

In the above equation, f(w, d) is the number of times word
w occurs in document d, and w ∈ di denotes that word w
appears in document di. Textual similarity between a doc-
ument q and another document d is obtained by computing
the cosine similarity of the two vectors representing q and
d [6].

3. DUPFINDER
In this section, we describe the architecture of DupFinder,

the algorithm that we use to return potential duplicate bug
reports, some implementation details, and a usage scenario
on how DupFinder can be used.

System Architecture. DupFinder consists of a client-side
component and a server-side component. The client-side
component handles interaction with user (i.e., reporter) and
communicates with the server-side component to retrieve
relevant bug reports given a user query. A user query is a
combination of the texts that appear in the summary and
the description fields of a new bug report. The client-side
component is added to the bug report entry page (i.e., the
page where a user can enter the details of a bug that the user
intends to report). The server-side component compares the
user query with the existing bug reports and outputs a list
of most similar reports.

Algorithm. Algorithm 1 shows the pseudocode of an al-
gorithm for finding duplicate bug reports, which is imple-
mented in the server-side component. It accepts as input a
new bug report NewBr, k most recently created bug reports
RecentReports, and number of most similar bug reports to
return n. The algorithm returns a ranked list of n bug re-
ports in RecentReports that are most similar to NewBr.
In lines 1-4, it concatenates the text in the summary and
description fields of NewBr, performs text preprocessing
on the concatenated text, and creates a vector space model
(VSM) representation (which is a vector of weights) from
the preprocessed text. The detail of each of these steps is
described in Section 2.2. In lines 5-9, it also performs text
concatenation, text preprocessing, and constructs a VSM
representation from the summary and description fields of
each report in RecentReports. In line 10, it computes the
cosine similarity between the VSM representation of the new
bug report and the VSM representation of each bug report
in RecentReports. In line 12, it then sorts bug reports in
RecentReports based on their cosine similarity scores. Fi-
nally, in line 13, top-n bug reports with the highest scores
are returned. By default, we set k and n to 100 and 5, re-
spectively. Users might set k to a larger number to reduce
the risk of not identifying duplicates of older bugs. Setting

872

Figure 1: DupFinder User Interface

Algorithm 1 FindDuplicate

Input: NewBr: a new bug report
RecentReports: k most recent bug reports
n: number of most similar bug reports to return

Output: top-n most similar bug reports

1 NewBrTokens← Tokenize(NewBr.Summary,NewBr.Desc)
2 Remove stop words from NewBrTokens
3 Stem each word in NewBrTokens
4 NewBrV SM ← ConstructV SM(NewBrTokens)
5 foreach instance Br ∈ RecentReports do
6 BrTokens← Tokenize(Br.Summary,Br.Desc)
7 Remove stop words from BrTokens
8 Stem each word in BrTokens
9 BrV SM ← ConstructV SM(BrTokens)

10 Br.Sim← CosineSimilarity(NewBrV SM,BrV SM)

11 end
12 Sort Br in RecentReports by Br.Sim
13 return top-n most similar bug reports

k to a larger number increases the runtime cost though. In
case the runtime cost is unacceptable for a large k, our tool’s
efficiency can be improved by building an index.

The algorithm is based on Runeson et al. work [8]. How-
ever, we do not implement synonyms and spellchecking part
of their approach as it requires domain knowledge and man-
ual labeling (i.e., they survey company employees to con-
struct a thesaurus). We implement only parts of their ap-
proach that can be fully automated and thus is applicable
to bug reports from a wide-range of software projects.

Implementation Details. The client-side of DupFinder is
implemented by overriding a template of Bugzilla that ren-
ders the user interface that allows users to input new bug
reports. The server-side of DupFinder is implemented as
a new web-service that is called by the client-side. These
follows the standard procedure specified by Bugzilla to im-
plement a new extension.

Usage Scenario. Figure 1 shows the interface of bug re-
port entry page when our extension is enabled and a new

bug report has been entered. As shown in the figure, a user
can enter text into the summary and description fields of
the new bug report. A background script monitors the state
of the summary and description fields. When a user en-
ters a text to either fields, the background script waits until
the user stops typing and then seamlessly extracts the con-
tent of the summary and description fields. The extracted
content is then sent to the server-side component. The back-
ground script also concurrently generates a table below the
summary field in the bug report entry page. Initially, this
table only notifies the reporter that the system is currently
searching for possible duplicate bug reports. The table’s
content will be changed depending on the response from the
server-side component. If the server-side component gives
no response or returns an error, the table’s content will no-
tify the user of the problem. If the server-side component
returns a list of relevant bug reports, the table will be filled
with information of those returned bug reports. The table
will then contain these elements:

1. Bug ID. It is the id of an existing bug report that is
a possible duplicate of the new bug report. It is linked
to a separate page that displays the bug report which
allows the user to thoroughly investigate whether the
bug report is really describing the bug that the user is
currently reporting.

2. Summary. It is the synopsis of an existing bug report
that is a possible duplicate. It allows for quick assess-
ment of whether the bug report is indeed a duplicate
of the new bug report.

3. Status. It indicates the status of a possible duplicate
bug report. If a user thinks that the bug report is a
duplicate and the status is fixed, then the user does
not need to proceed any further.

4. Add CC Button. It allows a user to add himself to
the cc list of the corresponding bug report that is con-
sidered a potential duplicate of the currently entered

873

bug report. This is only relevant if the possible dupli-
cate bug report is still opened and the user wants to
keep track or contribute to the bug fixing process.

4. RELATED WORK
In this section, we describe past studies on duplicate bug

reports detection which can be divided into two categories:
unsupervised and supervised approaches. Unsupervised ap-
proaches do not require any training data (i.e., sets of bug
reports that are known to be duplicate of one another). On
the other hand, supervised approaches require training data.

Unsupervised Approaches. Runeson et al. use an in-
formation retrieval technique to identify duplicate bug re-
ports [8]. Their approach uses vector space model to rep-
resent a bug report and compares representations of bug
reports to identify bug reports that are similar to a new bug
report. They develop a prototype tool and evaluate it on a
corpus of defect reports from Sony Ericsson Mobile Commu-
nications. Sureka and Jalote propose a method which uses
N-gram based model to detect duplicate bug reports and
evaluate their technique on bug reports from Eclipse [11].
The work of Runeson et al. and Sureka et al. have never
been compared against a common dataset and thus it is un-
clear which technique is the best performing one. Wang et
al. extend the work by Runeson et al. to consider execu-
tion traces and show that by considering execution traces,
duplicate bug report can be identified more accurately [13].
However, execution traces are often unavailable for many
bug reports. In this work, we integrate the approach by
Runeson et al. into Bugzilla bug tracking system and make
our implementation available for public use.

Supervised Approaches. A number of supervised ap-
proaches work in the same setting as the above mentioned
unsupervised approaches, that is given a new bug report, re-
turn a ranked list of bug reports that are most similar to it.
Sun et al. build a discriminative model, which gives a score
based on the probability of two reports being duplicate of
each other and the score is used to retrieve similar bug re-
ports [10]. Sun et al. extend their previous work by propos-
ing a new information retrieval model based on BM25 whose
weights are tuned based on a training data [9]. Nguyen et
al. extend the work of Sun et al. by combining BM25 with
a specialized topic model [7]. Other supervised approaches
build a model based on a training data and use it to analyze
a new bug report and predict if it is a duplicate bug report or
not. Jalbert and Weimer predict duplicate bug reports using
text similarity, surface, and clustering features [2]. Tian et
al. extend this work by using more effective features (e.g.,
REP similarity measure, product, etc.) to achieve higher
accuracy [12]. Another set of supervised approaches build
a model based on a training data and use it to analyze a
pair of bug reports and predict whether they are duplicate
of each other or not. Lo et al. mine closed discriminative
dyadic sequential patterns and use them to detect duplicate
bug report pairs [5]. Alipour make use textual, categori-
cal, and contextual features to detect duplicate bug report
pairs [1]. Klein et al. and Lazar et al. extend Alipour et al.
work by adding new features [3, 4].

Bugzilla Default Functionality. Bugzilla provides a
default functionality that also recommends similar reports
when a user enters a new bug report. However, the default

implementation is only based on text in the summary field
of bug reports and does not consider the frequency of words
that appear in bug reports. Thus, our tool would rank the
bug reports better if: (1) relevant texts are entered only
in the description field of the new bug report, or (2) both
duplicate and non-duplicate reports of the new bug report
contain relevant words, but with different frequencies. Our
tool replaces this default implementation with the technique
proposed by Runeson et al. which uses state-of-the-art in-
formation retrieval techniques. Our goal is to make recent
advances in the area of duplicate bug report detection ac-
cessible to practitioners.

5. CONCLUSION AND FUTURE WORK
Duplicate bug report detection has been actively re-

searched for many years and thus many techniques have been
proposed to solve it. However, they are currently not acces-
sible to practitioners. In this work, we have developed a tool
called DupFinder that implements a state-of-the-art unsu-
pervised duplicate bug report detection technique proposed
by Runeson et al.. For good integration with an existing
bug tracking system, we implement it as a Bugzilla exten-
sion. This allows DupFinder to be easily used in actual
development environment. In the future, we plan to incor-
porate more state-of-the-art duplicate bug report detection
algorithms that have been proposed in literature. We plan to
add both unsupervised and supervised duplicate bug report
detection approaches into DupFinder.

6. REFERENCES
[1] A. Alipour, A. Hindle, and E. Stroulia. A contextual

approach towards more accurate duplicate bug report
detection. In MSR, 2013.

[2] N. Jalbert and W. Weimer. Automated duplicate detection
for bug tracking systems. In DSN, 2008.

[3] N. Klein, C. S. Corley, and N. A. Kraft. New features for
duplicate bug detection. In MSR, 2014.

[4] A. Lazar, S. Ritchey, and B. Sharif. Improving the
accuracy of duplicate bug report detection using textual
similarity measures. In MSR, 2014.

[5] D. Lo, H. Cheng, and Lucia. Mining closed discriminative
dyadic sequential patterns. In EDBT, 2011.

[6] C. Manning, P. Raghavan, and H. Schutze. Introduction to
Information Retrieval. Cambridge, 2008.

[7] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and
C. Sun. Duplicate bug report detection with a combination
of information retrieval and topic modeling. In ASE, 2012.

[8] P. Runeson, M. Alexandersson, and O. Nyholm. Detection
of duplicate defect reports using natural language
processing. In ICSE, 2007.

[9] C. Sun, D. Lo, S. C. Khoo, and J. Jiang. Towards more
accurate retrieval of duplicate bug reports. In ASE, 2011.

[10] C. Sun, D. Lo, X. Wang, J. Jiang, and S. C. Khoo. A
discriminative model approach for accurate duplicate bug
report retrieval. In ICSE, 2010.

[11] A. Sureka and P. Jalote. Detecting duplicate bug report
using character n-gram-based features. In APSEC, 2010.

[12] Y. Tian, C. Sun, and D. Lo. Improved duplicate bug report
identification. In CSMR, 2012.

[13] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using natural
language and execution information. In ICSE, 2008.

874

