
An Exploratory Study of Functionality and Learning Resources
of Web APIs on ProgrammableWeb

Yuan Tian, Pavneet Singh Kochhar, and David Lo
School of Information Systems, Singapore Management University, Singapore

{yuan.tian.2012,kochharps.2012,davidlo}@smu.edu.sg

ABSTRACT

Web APIs provide various functionalities that can be lever-
aged by developers in building their applications. Programm-
ableWeb, which is the largest and most active web API and
mashup collection, provides a record of thousands of web
APIs and mashups. However, important properties about
these large number of web APIs, such as their functionality
and support/resources for learning, have never been studied
by the existing research work.

In this study, we perform an exploratory analysis on func-
tionality and learning resources of 9,883 web APIs and 4,315
mashups listed on ProgrammableWeb, and find that: (1) web
APIs provide a wide range of functionalities related to busi-
ness solution, text analysis, data source, etc.; many of them
are substitutable; only a minority have been used with other
APIs; (2) a majority of web APIs on ProgrammableWeb have
provided resources to support developers in learning how to
use the APIs.

1 INTRODUCTION

Web APIs are becoming more popular and important in
recent years as more web service providers release APIs to
allow developers access their services. However, as the number
of web APIs increases, there comes a challenge for developers
to search and find suitable APIs for their projects. To deal
with this challenge, ProgrammableWeb1, a web site that
stores information about various web APIs and applications
that are made from these APIs (i.e., mashups), was created
in 2005. Now, ProgrammableWeb is the largest and most
active site about web APIs and their mashups; it provides
information about thousands of APIs and mashups.

Due to the importance of ProgrammableWeb, a number
of researchers have analyzed it to gain general insights on
web APIs and mashups. Previous studies analyzing Pro-
grammableWeb mainly focus on the construction and analysis
of a network of APIs that are used together in mashups, and

1http://www.programmableweb.com/

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

EASE’17, June 15-16, 2017, Karlskrona, Sweden

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4804-1/17/06. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3084226.3084286

how this network evolves over time [3, 5, 15, 16, 19]. However,
important properties about this large number of web APIs,
such as their functionality and provided support/resources
towards better usability, which are important pieces of in-
formation that developers want to know2, have never been
studied.

To gain insights into the functionality and usability of
web APIs, this study investigates functionality and learning
resources of web APIs on ProgrammableWeb by answering
the following research questions:

RQ1: What are the functionalities provided by the
thousands of web APIs? How many of them have
complementary and substitutable web APIs?
RQ2: How many resources are available for devel-
opers to learn the usage of web APIs?

To answer the above research questions, we construct a
large dataset by crawling information about all web APIs
and mashups available on ProgrammableWeb in May 2014.
For each web API and mashup, we collect its description
from its profile page. After a pre-processing step, our data
set contains a total of 9,883 API descriptions, and 4,315
mashup descriptions. We pick a statistically representative
random sample (sampling with 95% confidence level and
5% margin of error) of web APIs that contains 370 APIs;
for each API in this subset, we manually collect additional
information available on the API provider home pages, as
well as information from other corroborating sources, to get
a complete view of these APIs.

2 BACKGROUND

ProgrammableWeb stores a list of web APIs along with a list
of mashups, which are applications that are built on top of
the APIs. ProgrammableWeb has a collection of over 11,000
APIs and over 7,000 mashup profiles.

A web API is a set of functionalities that are provided
either for free or for a fee and they can be accessed typically as
REST (REpresentational State Transfer)-based web services.
ProgrammableWeb stores information about each API on its
profile page. The most important pieces of information are the
short and long descriptions that describe the functionalities
of the API. Other information like the home page of the API
provider is also provided.

2Our preliminary survey with 15 professional web developers found
that almost all of them (14 out of 15) carefully consider functionalities
and usability of web APIs before adopting them. They often spend
much time (more than an hour to even a week) to find suitable web
APIs.

http://www.programmableweb.com/
https://doi.org/http://dx.doi.org/10.1145/3084226.3084286

A mashup is an application that is built from one or
more web APIs and integrates these APIs into a new service.
Mashups often mediate among a set of web APIs provided by
a heterogeneous set of providers. A mashup typically consists
of three components: data mediation component, process
mediation component, and user interface customization com-
ponent [8].

3 FUNCTIONALITY OF WEB APIS

3.1 Methodology

3.1.1 Sub-Questions. To investigate functionalities of web
APIs on ProgrammableWeb, we propose the following three
sub-questions:

1.1) What are the main groups of functionalities provided
by web APIs?

1.2) How many web APIs have complementary web
APIs?

1.3) How many web APIs have substitutable web APIs?

Answer to the first question will show the main features
that are provided by web APIs listed on ProgrammableWeb.
The second and third questions deal with the relationships
among web APIs. In this paper, we consider two relationship
types: complementarity and substitutability. Complemen-
tary APIs are the APIs that can be combined together to im-
plement some functionalities. In this study, we define that two
APIs are complementary to each other if they have been used
together in a mashup that are listed on ProgrammableWeb.
Substitutable APIs are APIs that provide similar features,
such as Trulia API3 and Zillow API4, which are alternative
APIs that developers can use when they want to search for
real estate information. Knowing alternative APIs help devel-
opers to compare and select the most suitable API for their
projects.

3.1.2 Approach. To answer the three questions described
in Section 3.1.1, we first employ a topic modeling algorithm to
learn common topics from a corpus containing descriptions of
9,883 APIs (i.e., short description, long description, and key-
words) extracted from the API profiles on ProgrammableWeb.
ProgrammableWeb maintains a list of category names (e.g.,
Travel, USA, 3D) and allows its users to assign one primary
category and one or more secondary category using category
names from their list. However, there are more than 450
categories in the list and some of them are too fine-grained
that only few web APIs belong to those categories. For in-
stance, there is only one web API (i.e., Kassabok) under
the category “Budget”. By applying topic modeling, we are
able to categorize web APIs into broad categories. For in-
stance, using topic modeling, the web API Kassabok can be
grouped with other web APIs that provide financial manage-
ment functionalities. Sites such as ProgrammableWeb could
benefit from this approach by combining both topics learned
from API descriptions and user selected categories to provide
a hierarchical view of the functionality of web APIs.

3http://developer.trulia.com/
4http://www.zillow.com/howto/api/APIOverview.htm

Next, we automatically analyze the 4,315 mashups to find
complementary APIs that are used together in at least one
mashup.

For RQ1.3, we randomly select a statistically representative
sample of web APIs from the 9,883 APIs. The size of a
statistical representative sample set is determined by two
measures, i.e., margin of error and confidence level. In this
study, to represent the 9,883 web APIs, we set a standard
95% confidence level and a 5% margin of error5, which results
a sample contain 370 APIs. For each of the sampled API,
we find a list of top-10 APIs that are the most similar to it
based on their descriptions. We then manually investigate
these APIs to see if they are substitutable.

RQ1.1: Topic Discovery. In this work, we use a topic mod-
eling algorithm, namely Latent Dirichlet Allocation (LDA) [2],
to discover the topics contained in the descriptions of web
APIs. LDA is an advanced natural language processing tech-
nique that can be directly applied on a corpus (i.e., a set) of
textual documents to discover topics without any training
data. LDA takes a parameter 𝐾 that determines the number
of topics that will be outputted. For each document, LDA
assigns a set of probabilities for it to belong to each of the
𝐾 topic. For each topic, LDA outputs a list of words that
are the most relevant to the topic. LDA has been used by
many past studies in software engineering [4, 6, 9, 10, 18].
One of the closest work to ours, by Barua et al., uses LDA
to discover common topics in StackOverflow questions and
answers [1].

LDA processes a corpus of textual documents, thus, we
need to convert the web APIs into textual documents. Each
web API has a profile page on ProgrammableWeb which
contains descriptions of the functionality of the API. We
merge these descriptions (i.e., short description, long descrip-
tion, keywords) into a text file and then apply four pre-
processing steps to clean it. We first remove HTML tags (e.g,
<a href=“...”) from this text. Then, we apply Part-of-Speech
(POS) tagger to infer for each word its part of speech (e.g.,
noun, verb, etc.). To do this, we use a popular tool namely
Stanford POS tagger [14]. We just keep nouns and verbs,
which contain more information describing the functionalities
of an API and drop other kinds of words (e.g., conjunctives,
adjectives, etc.). Next, we remove common English stop-words
and 30 other most common words as they might appear so
frequently that they would appear in many different topics.
As the fourth step, we reduce words to their base forms using
the standard Porter stemming algorithm [11].

Next, we use a Java implementation of LDA referred to as
the Stanford Topic Modeling Toolbox6 to learn topics from
the pre-processed texts. LDA takes a parameter 𝐾 which is
the number of topics. We automatically and systematically
pick the best value of 𝐾 by selecting a value of 𝐾 that can
achieve the lowest perplexity score. Perplexity score has been
used as a standard metric in the natural language processing

5For instance, if 90% of the web APIs in sample set have substitable
APIs, then in 95% of time between 85%-95% of the web APIs on
ProgrammableWeb have substitable APIs.
6http://nlp.stanford.edu/software/tmt/tmt-0.4/

http://developer.trulia.com/
http://www.zillow.com/howto/api/APIOverview.htm
http://nlp.stanford.edu/software/tmt/tmt-0.4/

(NLP) community to evaluate the performance of an LDA
setting [2]. To compute the perplexity score, we separate
our dataset into a training data (80%) and a testing data
(20%). Next, we vary the value of 𝐾 from 5 to 50 with a
step of 5, and train LDA models from the training data and
compute the perplexity of the learned model on the testing
data. We find that that 𝐾 = 35 is the best topic number for
our dataset.

Table 1: Top 10 Topics Discovered by LDA

Name Top-10 Representative Words

Business So-
lution

busi compani softwar enterpris solut sys-
tem product technolog enabl help

Text Analy-
sis

text languag analysi extract gener return
engin specifi semant term

Data Source databas librari research refer collect queri
resourc scienc metadata record

Geographical
Service

map locat weather place geocod forecase
latitud longitud return displai

Social Me-
dia

social share network commun group profil
peopl friend post member

Online Pay-
ment

payment card account transact credit pro-
cess merchant bill invoic onlin

E-
commerce

product shop order store price retail
ecommerc affili purchas item sale mar-
ketplac

Shipping &
Delivery

address valid ship number code verif
looup mail deliveri zip

System Ad-
min

monitor test server internet control devic
secur perform system host

Finance trade exchang currenc bitcoin financi
market stock rate price get

RQ1.2: Finding complementary APIs. We regard a pair
of web APIs as complementary if they have been used together
in a mashup listed on ProgrammableWeb. Therefore, we go
through each mashup and mark any two APIs used in the
mashup as a complementary pair. In this way, we could get
all APIs that are complementary to an API.

RQ1.3: Finding substitutable APIs. To investigate API
substitutability, we investigate a statistically representative
random sample containing 370 web APIs. For each of these
370 APIs, we first compute its similarity with other APIs
based on their preprocessed text information generated in
Step 1. We represent each web API profile as a bag of words,
and then convert it to a vector of weights following the vector
space model (VSM) [7]. More specifically, for each API, we
create its vector of weights, where every weight corresponds
to a word that appears in the preprocessed description of
the API. The weight of a word is computed using the term
frequency - inverse document frequency (aka. tf-idf) weighting
scheme. The tf-idf weight of word 𝑤 in document 𝑑 (in our
case: preprocessed description of an API) given a set of
documents 𝐷 (in our cease: preprocessed descriptions of all

APIs), denoted as 𝑡𝑓 − 𝑖𝑑𝑓(𝑤, 𝑑,𝐷), is computed as:

𝑙𝑜𝑔(𝑓(𝑤, 𝑑) + 1)× 𝑙𝑜𝑔
|𝐷|

|{𝑑𝑖 ∈ 𝐷|𝑤 ∈ 𝑑𝑖}|
(1)

In the above equation, 𝑓(𝑤, 𝑑) is the number of times word
𝑤 occurs in document 𝑑, and {𝑑𝑖 ∈ 𝐷|𝑤 ∈ 𝑑𝑖} represents
a set of documents that contain word 𝑤. After converting
each API into a vector of weights, we compute the similarity
between an API and another API as the cosine similarity [7]
between their corresponding vectors of weights. Equation 2
shows how the cosine similarity between a vector 𝑉𝑞 and
another vector 𝑉𝑞 is computed.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑞, 𝑑) = 𝑐𝑜𝑠(𝑞, 𝑑) =
𝑉𝑞 ∙ 𝑉𝑑

|𝑉𝑞||𝑉𝑑|
(2)

In the above equation, 𝑉𝑞 ∙ 𝑉𝑑 represents the inner product
of the two vectors and |𝑉𝑞| represents the size of vector 𝑉𝑞.

For each of the 370 APIs, after we compute its similarities
with other APIs (i.e, 9,882 APIs) , we rank the other APIs
based on their similarity scores. We then manually inves-
tigate the top-10 most similar APIs to see if any of them
are substitutable with the target API. In total, we manually
check 3,700 API pairs to study the substitutability of APIs.

3.2 Results

Functionalities of Web APIs. Using LDA, we learn 35
topics from the profiles of 9,883 APIs. Due to space limitation,
we only present the top 10 topics which cover the most number
of APIs in Table 1. For each topic, LDA outputs a ranked list
of representative words that are the most related to the topic.
Based on these words, we manually assign a name to each
topic. In Table 1, we present the top-10 most representative
words for each topic. Note that all the words are in their
stemmed form.

Number of complementary APIs. Table 2 shows the
number of APIs that have various numbers of complementary
APIs and some sample APIs. On the one hand, we observe
that out of the 9,883 APIs, most of them (93.1%) have not
been used together with any other APIs in any mashup. On
the other hand, there are few APIs that are complementary
with 50 or even more than 100 web APIs.

Table 2: Complementary APIs

#Comp. =0 =1 >1 &
<50

≥50 &
<100

≥100

#APIs 9,200 152 517 10 4

Sample Yahoo Amplify Bing Amazon Facebook
API Messenger Product

Advertising

Number of substitute API pairs. Out of the 370 sampled
APIs, most of them (84.6%) have substitutable APIs. Few
APIs (15.4%) that do not have substitutable APIs are mostly
related to governmental service, geographical-specific service,
and high-tech service. Some APIs (33.5%) have more than

5 substitutable APIs, and they are mostly related to cloud
storage service, online payment, etc.

4 LEARNING RESOURCES OF WEB
APIS

4.1 Methodology

4.1.1 Metrics. Robillard et al. conducted a survey on API
learning obstacles [12]. They find that documentation and
other learning resources are important for developers to learn
and use an API. Therefore, in this work, we consider the
usability of an API mainly by looking into its documentation
and other learning resources. In this work, we propose six
metrics to measure the amount of supporting resources pro-
vided by a web API owner; each metric considers a different
learning resource such as user manual, discussion platform,
and StackOverflow. We describe these six metrics and men-
tion in Table 3. In Table 3, we also give the reasons why
these metrics are important.

For each API, we assign 6 binary scores (i.e., 0 or 1) to
the six metrics (UM1-UM6) presented in Table3. While 1
means the API has a corresponding supporting resource,
and 0 means the corresponding supporting resource is not
provided by the API provider. For example, we assign to
an API a UM3 score of 1 if the provider of the API gives
code samples that can be used by developers to learn the
usage of the API. We show some examples of APIs which
are supported by learning resource measured by UM1, UM2,
UM3, UM4, UM5, and UM6 in Figures 1, 2, 3, 4, 5, and 6
respectively.

Figure 1: Intent Documentation for Amazon Prod-
uct Advertising API

Figure 2: Step-by-Step Guide for Google Fonts API

Figure 3: Code Sample for Bitext API

Figure 4: Error Handling Instructions for Pay-
Point.net API

Figure 5: Technical Support for Iron.io IronMQ API

4.1.2 Approach. To assign metric scores to APIs, manual
inspection is needed. This process is a tedious one since we
need to manually inspect web pages that describe each API
(created by the API provider) and search StackOverflow pages
to find if a learning resource for an API is available. Thus,
we can not investigate all of the 9,883 web APIs listed on
ProgrammableWeb. Therefore, we select the same statistically
representative sample of web APIs (i.e., 370 APIs) which is
used in RQ1, and manually decide the values of the metrics
for each of the 370 APIs. We describe the detailed steps in
the following paragraphs.

Figure 6: StackOverflow Post for Google Maps API

Table 3: Six Types of Learning Resources

Metric Name Description Reason to Consider

UM1: Intent Documentation Description about the functionalities of
an API and the purpose the API is in-
tended to be used.

Intent documentation can help develop-
ers decide whether the API is suitable for
his/her needs.

UM2: Step-By-Step Guide Detailed description about the steps to
get and use an API.

Step-by-step guide can help developers to
quickly get started in using the API.

UM3: Code Sample Code snippets or complete sample ap-
plications that are used to demonstrate
special aspects or functionalities of an
API.

A code sample can be reused and extended
by developers for their needs. Developers
will benefit from concrete examples that
will help them better understand various
functionalities of the API better.

UM4: Error Handling Instructions Description about exceptions or com-
mon errors that can happen and how
developers can deal with them.

Developers need to know how to handle un-
expected situations, which often happen due
to developers misconception on the function-
alities and correct workings of an API.

UM5: Technical Support Emails, chat services, and other means
provided by API providers to help de-
velopers use their APIs.

Technical support makes it possible for de-
velopers to ask questions and receive help
from experts.

UM6: StackOverflow Posts Questions, answers, and discussions
about an API on StackOverflow.

Relevant threads in StackOverflow allows
developers to learn from questions that were
asked by other developers and their answers.

Step 1: Manual Score Assignment. For each API in the
sampled 370 web APIs, we assign scores of the six metrics
presented in Table 3 to it. The scores of UM1 to UM5 are
assigned based on information provided by the API provider
on its home page, while the UM6’s score depends on the
StackOverflow search result. For each API, we thoroughly
explore the API provider’s home page by following relevant
links in the home page to identify as much learning resources
as possible. For UM6, we search StackOverflow using the
API names as key words. We then assign the value of UM6
by browsing the returned questions and checking whether
they are relevant to the API. This manual check is needed as
sometimes a StackOverflow question can include words that
appear in the API name but is not relevant to the API.
Step 2: Data Analysis. After step 2, each API in the
sampled data set has 6 scores corresponding to the 6 proposed
metrics. Next, we analyze how the scores vary for the 370
APIs.

4.2 Results

We observe that most of the sampled web APIs have intent
documentation (92.7%), code sample (89.4%) and technical
support (100%). Out of the 370 sampled API, 261 of them
have step by step guides (i.e., 70.5%), 200 of them have
instructions on how to deal with common errors (i.e., 54.0%).
We find that only 206 of these APIs (i.e., 55.7%) have relevant
posts in StackOverflow. We also calculated the number of
learning resource types each API has, and find that that 62%
of the sampled web APIs have at least 5 kinds of learning
resources to help developers use them. 3% of the 370 APIs
have only 1 learning resource to support developers.

5 THREATS TO VALIDITY

To mitigate the threat to external validity, we choose Pro-
grammableWeb as the target web API repository to con-
duct our exploratory study as it is the largest repository of
web APIs. Still, web APIs on ProgrammableWeb might not
present all web APIs. For RQ1 (except for the analysis of the
substitutability of APIs), we consider all of the web APIs
on ProgrammableWeb that are not out of service. However,
since manual identifying substitble APIs/learning resources
cost huge human efforts, for a part of RQ1 (substitutability
of APIs) and RQ2, we sample a set of web APIs for investi-
gation, results on which might not apply to the rest of web
APIs on ProgrammableWeb. To mitigate such a threat on
the generalizability of our findings, we randomly select a
statistically representative sample of web APIs. In RQ2, we
consider six metrics related to learning resources of web APIs.
Although these six metrics cover various learning resources,
they may not form an exhaustive set. In a future work, we
plan to investigate possibility of adding more metrics.

6 RELATED WORK

6.1 Studies on ProgrammableWeb

Yu and Woodard investigated web APIs and mashups listed
on ProgrammableWeb [19]. They applied network analysis on
two types of networks on ProgrammableWeb. One network
is the API-mashup network, where nodes represent APIs
and mashups, and edges indicate which APIs are used by
which mashups. The other network that they considered is
the API network where APIs are connected if they have
been used in one mashup. By analyzing the API-mashup
network, they found that the distribution of number of APIs
used in mashups follows power-law relationship and long-tail

property, which show that a large number of mashups tend
to adopt a small set of popular APIs. They also found that
diversity of mashups listed in ProgrammableWeb decreases
over time indicating that mashup providers tend to reuse
some design patterns when creating new mashups. Wang
et al. studied the network and clustering properties of Pro-
grammableWeb and defined a new concept namely mashup
entropy to measure the diversity of the mashup commu-
nity [15]. Weiss et al. analyzed the evolution of API-mashup
network of ProgrammableWeb and found that APIs that
are frequently used in current mashups are likely to also
be frequently used in future mashups [16]. Different from
above works, our study focuses on functionality and learning
resources of web APIs on ProgrammableWeb rather than
properties of networks that are built from APIs and mashups.

6.2 Studies on Web Services

A numbert of studies have proposed approaches for web ser-
vice discovery and matchmaking [13, 17]. These approaches
help to match user needs against WSDL description files of
web services in UDDI repositories. Wu andWu proposed a sys-
tem that takes in a web service specification in WSDL format
and searches an UDDI repository for similar web services us-
ing four kinds of similarity measures, i.e., lexical similarity, at-
tribute similarity, interface similarity, and QoS similarity [17].
Rong and Liu did a survey of web service discovery approaches
and categorized them into keywords-based matchmaking,
syntactics-based matchmaking, semantics-based matchmak-
ing, and pragmatics-based matchmaking approaches [13].
Similar to these existing studies, we also investigate the func-
tionality of web services. However, our goal is not to produce
a better search technique, rather to investigate the range of
functionalities that are provided by thousands of web APIs
along with their complementarity and substitutability. Fur-
thermore, we focus on web APIs, which are RESTful web
services, rather than UDDI-based web services.

7 CONCLUSION & FUTURE WORK

In this study, we find that web APIs on ProgrammableWeb
cover a variety of topics such as Business Solution, Data
Source and many more. We also find that functionalities
of many web APIs overlap, e.g., out of the 370 sampled
APIs, 84.6% of them have substitutable APIs. Our study
also finds that most of the web APIs on ProgrammableWeb
have not been used together with any other APIs in any
mashup. The wide variety of functional topics covered by
web APIs, the large number of substitutable APIs, and the
unexplored potentials of mixing-and-matching multiple APIs,
highlight the need for a better tool to support web API
search and recommendation. Such an advanced tool can help
developers to better identify relevant web APIs satisfying
a particular need in a shorter amount of time, weigh pros-
and-cons of substitutable APIs before deciding on one, and
recommend complementary APIs that can reduce wasted
effort in reinventing the wheel. We plan to build such a tool
in our future work.

Additionally, by checking six types of learning resources
for 370 sampled web APIs, we observe that most of the
web APIs have intent documentation (92.7%), code sample
(89.4%) and technical support (100%). However, less than
80% of them have step by step guides (70.5%), instructions
on how to deal with common errors (54.0%), and relevant
posts in StackOverflow (55.7%). These observations highlight
the need for additional tool support that can help developers
in the creation of additional learning resources (especially
step by step guides, instructions on how to deal with common
errors, etc.) with ease. For example, it will be interesting to
develop a tool that can mine multiple software forums to
create a list of common errors and ways to deal with them.
This is yet another direction of our future work.

ACKNOWLEDGMENTS
This research was supported by the Singapore Ministry of
Education (MOE) Academic Research Fund (AcRF) Tier 1
grant.

REFERENCES
[1] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. 2012.

What are developers talking about? An analysis of topics and
trends in Stack Overflow. EMSE (2012), 1–36.

[2] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent
dirichlet allocation. JMLR 3 (2003).

[3] Yuanbin Han, Shizhan Chen, and Zhiyong Feng. 2014. Mining
Integration Patterns of Programmable Ecosystem with Social
Tags. Journal of Grid Computing (2014).

[4] Abram Hindle, Michael W Godfrey, and Richard C Holt. 2009.
What’s hot and what’s not: Windowed developer topic analysis.
In ICSM. IEEE.

[5] Keman Huang, Yushun Fan, and Wei Tan. 2012. An empirical
study of programmable web: a network analysis on a service-
mashup system. In ICWS. IEEE, 552–559.

[6] Stacy K Lukins, Nicholas A Kraft, and Letha H Etzkorn. 2008.
Source code retrieval for bug localization using latent dirichlet
allocation. In WCRE. IEEE.

[7] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. 2008. Introduction to Information Retrieval. Cam-
bridge University Press.

[8] E. Michael Maximilien, Ajith Ranabahu, and Karthik Gomadam.
2008. An Online Platform for Web APIs and Service Mashups.
IEEE Internet Computing 12 (2008).

[9] Stephan Neuhaus and Thomas Zimmermann. 2010. Security trend
analysis with cve topic models. In ISSRE. IEEE.

[10] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David
Lo, and Chengnian Sun. 2012. Duplicate bug report detection
with a combination of information retrieval and topic modeling.
In ASE. IEEE.

[11] Martin F Porter. 1980. An algorithm for suffix stripping. Program:
electronic library and information systems (1980).

[12] Martin P Robillard and Robert Deline. 2011. A field study of
API learning obstacles. EMSE 16 (2011).

[13] Wenge Rong and Kecheng Liu. 2010. A survey of context aware
web service discovery: from user’s perspective. In SOSE. IEEE.

[14] Kristina Toutanova and Christopher D Manning. 2000. Enriching
the knowledge sources used in a maximum entropy part-of-speech
tagger. In EMNLP. Association for Computational Linguistics.

[15] Junjian Wang, Huajun Chen, and Yu Zhang. 2009. Mining user
behavior pattern in mashup community. In IRI. IEEE.

[16] Michael Weiss and GR Gangadharan. 2010. Modeling the mashup
ecosystem: structure and growth. R&d Management 40 (2010).

[17] Jian Wu and Zhaohui Wu. 2005. Similarity-based web service
matchmaking. In SCC. IEEE.

[18] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. 2013. Accurate
developer recommendation for bug resolution. In WCRE. IEEE.

[19] Shuli Yu and C Jason Woodard. 2008. Innovation in the pro-
grammable web: Characterizing the mashup ecosystem. In ICSOC.
LNCS 5472.

	Abstract
	1 Introduction
	2 Background
	3 Functionality of Web APIs
	3.1 Methodology
	3.2 Results

	4 Learning Resources of Web APIs
	4.1 Methodology
	4.2 Results

	5 Threats to Validity
	6 Related Work
	6.1 Studies on ProgrammableWeb
	6.2 Studies on Web Services

	7 Conclusion & Future Work
	References

