
How Practitioners Perceive Coding Proficiency
Xin Xia∗†, Zhiyuan Wan∗?, Pavneet Singh Kochhar‡ and David Lo§

∗College of Computer Science and Technology, Zhejiang University, Hangzhou, China
†Faculty of Information Technology, Monash University, Melbourne, Australia

‡Microsoft, Vancouver, Canada
§School of Information Systems, Singapore Management University, Singapore, Singapore

xin.xia@monash.edu, wanzhiyuan@zju.edu.cn, pavneetk@microsoft.com, davidlo@smu.edu.sg

Abstract—Coding proficiency is essential to software practi-
tioners. Unfortunately, our understanding on coding proficiency
often translates to vague stereotypes, e.g., “able to write good
code”. The lack of specificity hinders employers from measuring
a software engineer’s coding proficiency, and software engineers
from improving their coding proficiency skills. This raises an
important question: what skills matter to improve one’s coding
proficiency. To answer this question, we perform an empirical
study by surveying 340 software practitioners from 33 countries
across 5 continents. We first identify 38 coding proficiency skills
grouped into nine categories by interviewing 15 developers from
three companies. We then ask our survey respondents to rate
the level of importance for these skills, and provide rationales of
their ratings. Our study highlights a total of 21 important skills
that receive an average rating of 4.0 and above (important and
very important), along with rationales given by proponents and
dissenters. We discuss implications of our findings to researchers,
educators, and practitioners.

I. INTRODUCTION

Every software system needs code. Organizations and com-
panies want to hire people with excellent hard and soft skills
to create the needed code. Previous studies have looked at
soft skills [1]–[4]. For example, Li et al. investigated 53
soft skills for software engineers by interviewing 56 software
engineers in Microsoft [1], and they divided the soft skills
into four categories: personal characteristics, decision making,
teammates, and software product. However, hard skills have
not been investigated much. In this paper, we investigate
what hard skills contribute to coding proficiency. We refer
to these hard skills as coding proficiency skills - the skills
necessary to efficiently and effectively write high-quality code.
Various tests and tools have been developed to improve coding
proficiency [5], [6]. Additionally, coding proficiency skills are
also often assessed in a number of technical job interviews [7],
[8].

A large number of hard skills may contribute to one’s coding
proficiency. Often a large investment of time is needed to
acquire a new hard skill, and given the limited resources we
all have (in terms of time and energy), we often need to
make choices. What hard skills are necessary? What hard skill
should I invest in next? These questions are often in the mind
of both novices and experienced developers who need to learn
new hard skills to remain relevant in the ever changing and fast

?Corresponding author.

paced IT industry. They may also be in the mind of recruiters
who need to select competent software engineers.

In this work, we sought to figure out the hard skills that
contribute to coding proficiency and estimate their importance.
We first interviewed 15 software practitioners from three
software companies, and derived 38 coding proficiency skills
grouped into 9 categories: general coding skills, programming
language and infrastructure skills, refactoring and reuse, re-
quirement engineering, software design, understanding and
learning, interacting with environments, bug prevention and
fixing, and estimation. We then invited thousands of practi-
tioners1 from various backgrounds through emails to take our
survey, including those who work in small to large companies
and organizations (e.g., Google, Microsoft, LinkedIn and Intel)
and those who contribute to open source projects on GitHub. In
our survey, we asked respondents to rate the identified skills
according to their importance and provide rating rationales.
We highlighted 21 coding proficiency skills that are perceived
as important and very important, along with rationales given
by proponents and dissenters. We make the following contri-
butions:

• We perform a mixed qualitative and quantitative study to
investigate how practitioners perceive coding proficiency.
We present our results from our 15 interviews, as well as
a survey of 340 software practitioners from 33 countries
across five continents.

• We derive 38 coding proficiency skills that are grouped into
9 categories and rated based on survey responses. These
skills can help novices and software practitioner to be more
aware of skills that others deem as (very) important.

• We highlight important coding proficiency skills and the
rationales behind the importance ratings for these skills from
survey responses.

The remainder of this paper is structured as follows. Sec-
tion II briefly mentions related work. Section III describes
our methodology. Section IV presents the results. We discuss
implications and threats to validity in Section V. We conclude
and present future work in Section VI.

1The respondents of our survey are required to have experience in coding.

II. RELATED WORK

A. Studies on Developer Expertise

The closest work to ours is Li et al.’s study [1]. They inter-
viewed 59 software engineers in Microsoft to produce a list
of soft skills that a great software engineer should have. These
skills are grouped into four categories: personal characteristics,
decision making, teammates, and software product. Different
from this work, coding proficiency skills go beyond soft skills,
and most of them have not been studied by Li et al. We aim
to fill this gap in research and complement their findings.

Prior work performed empirical studies on how to be a star
engineer and conclude nine strategies [2], what employers in
a game company look for in new graduates [4], daily work
of 8 new hires in Microsoft [3], how developers investigate
source code [9], and the relevance of computer science and
software engineering education based on a survey of 168 re-
spondents [10]. Different from these studies, our work involves
a wide range of coding proficiency skills validated by 340
practitioners who come from 33 different countries and work
for different companies.

B. Studies on Measuring Developer Productivity
Prior studies explored factors that contribute to the produc-

tivity of developers, including characteristics of workplace and
organization [11], team size [12], better management, staffing,
incentives, and component reuse [13].

Recently, researchers have also investigated developers’ per-
ceptions on productivity [14], how to summarize and measure
development activity [15], correlations between personality,
style and performance in computer programming [16]. Their
findings include reducing context switches and setting goals
could improve productivity; developers with openness to ex-
perience personality have a positive association with breadth-
first programming style (i.e., developers incrementally build up
a system by implementing a portion of each functionality);
and developers with conscientiousness personality have a
positive association with depth-first programming style (i.e.,
developers implement a specific functionality to completion
before considering others). Our work is related to but different
from the above studies: we investigate developers’ perceptions
on coding proficiency (particularly the importance of various
hard skills).

III. RESEARCH METHODOLOGY

Our study consisted of open-ended interviews and a vali-
dation survey. In the open ended interviews, we interviewed
15 developers to get their insights into coding proficiency
skills that a software engineer should have. At the end of
the interviews, we finalized a collection of 38 skills that
can contribute to one’s coding proficiency. In the survey,
we evaluated the importance of the 38 skills by surveying
software practitioners from various background by means of an
online survey. Each respondent spent 10-25 minutes to rate the
importance of the skills and provided rationales that support
the ratings.

A. Open-Ended Interviews
1) Protocol: The first author conducted face-to-face in-

terviews with 15 software practitioners, each interview was
completed within an hour. The interviews were semi-structured
and divided into three parts.
Part 1: We asked some demographic questions such as the
experience the interviewee has on software development/test-
ing/project management, and also asked interviewees to de-
scribe the projects they have done.
Part 2: we asked open-ended questions to understand coding
skills. The questions include: Are you satisfied with your
coding proficiency? How do you improve coding proficiency?
What skills would affect coding proficiency? The purpose of
this part was to allow the interviewees to speak freely about
coding proficiency without any bias.
Part 3: We prepared candidate topics by carefully reading the
table of contents of representative coding textbooks (e.g., [17],
[18]), skimming the contexts of those textbooks, and referring
to high-rated posts on popular Q&A websites (e.g., [19], [20]).
The candidate coding proficiency skills span 7 topics, i.e.,
bug fixing, program comprehension, programming language,
implementation, testing, tool usage, and others. We picked a
list of topics that have not been explicitly mentioned in the
open discussion, and asked the interviewees to further discuss
those topics.

At the end of each interview, we thanked the interviewee
and briefly informed him/her what we plan to do with his/her
responses.

2) Participant Selection: We selected full-time employees
from three IT companies in China, namely Insigma Global
Service (IGS) [21], Hengtian [22], and a financial company
(for confidentiality reason we can only refer to as SS). IGS
and Hengtian are two outsourcing companies which have more
than 500 and 2,000 employees, respectively. SS mainly builds
IT solutions to support the financial service of commercial
banks. The selection criteria are as follows:
• We contacted the HR departments of these three companies

to get a list of employees. We then removed the employees
who are interns, working at a client’s company2, doing
adminstration management, or not available due to other
reasons (e.g., on vacation or on leave). In the end, we have
406, 104, and 132 candidates left from Hengtian, IGS, and
SS, respectively.

• To reduce the potential interference to one’s work, The HR
departments suggested inviting 10% of the candidates to
join our interviews. We randomly selected 40, 10, and 13
employees from Hengtian, IGS, and SS, and invite them to
join our interviews through emails. Out of the 63 emails,
2 received automatic replies notifying us of the absence of
the receiver; 32 declined our invitation; 11 did not reply
to our email; 18 accepted our invitation. Out of these
18 developers, 3 canceled their appointments before the
interview.

2Since IGS and Hengtian are outsourcing companies, some of their
employees need to work onsite.

TABLE I: Skills that contribute to coding proficiency, followed
by the average Likert scores from the survey responses (very
unimportant = 1, unimportant = 2, neutral = 3, important =
4, very important = 5).

C1. General Coding Skills
S1 Write code efficiently (i.e., clear coding task in a short amount of time) 4.03
S2 Write efficient code, e.g., the code can run very fast, use less memory 4.12
S3 Write well-documented code 4.07
S4 Write parallel programs that leverage multiple threads and processes 3.56
S5 Write code that embeds well with code written by others, e.g., write code

for a large project team which has many developers and require much
collaboration

4.37

C2. Programming Language and Infrastructure
S6 Master multiple program languages 3.61
S7 Master legacy programming languages (e.g., Cobol) 2.36
S8 Master popular programming languages (e.g., Java) 3.47
S9 Master big data infrastructure (e.g., Hadoop, elastic search) 3.15

C3. Refactoring and Reuse
S10 Recognize and extract reusable code from a larger code base 4.16
S11 Package, document and distribute a software library for others to reuse 4.13
S12 Able to reuse code created internally rather than reinventing the wheel 4.19
S13 Reuse suitable third party libraries rather than reinventing the wheel 4.26
S14 Refactor code by identifying and eliminating code and architecture smells 4.28

C4. Requirement Engineering
S15 Extract an abstraction or a model from a requirement (e.g., in UML

format)
3.53

S16 Implement a functionality correctly according to the requirement 4.31
S17 Recognize mismatches between requirement and implementation 4.29

C5. Software Design
S18 Break down a complex coding task into smaller tasks that can be

implemented separately
4.45

S19 Implement functionality following a modular design 4.34
S20 Implement functionality following suitable design patterns (e.g., singleton,

factory)
3.71

S21 Implement functionality avoiding design anti-patterns (e.g., god class,
brain class, feature envy)

3.82

C6. Understanding and Learning
S22 Understand existing code in a short period of time 4.04
S23 Understand trade-offs between different system architectures 4.02
S24 Read and understand most books/articles related to the programming

languages the developer mastered
3.88

S25 Acquire new domain-specific knowledge or learn new programming
languages fast

4.03

S26 Learn the usage of new tools fast 4.04
C7. Interacting with Environments

S27 Work with multiple IDEs (such as Eclipse and Visual Studio) 3.05
S28 Work with multiple OSes (such as Linux, Windows) 3.38
S29 Modify the programming environment to tailor it to the developers’

personal styles
3.64

S30 Work with a version control system (e.g., SVN, Git) 4.45
S31 Work with a bug tracking system (e.g., Jira, Bugzilla) 3.82
S32 Work with a code review system (e.g., Gerrit) 3.64

C8. Bug Prevention and Fixing
S33 Locate and fix bugs fast and accurately 4.33
S34 Write good unit test cases to detect potential bugs 4.18
S35 Write good integration test cases to detect potential bugs 4.02
S36 Write good system test cases to detect potential bugs 3.95

C9. Estimation
S37 Estimate well the effort needed to implement a new functionality 3.83
S38 Estimate the space and time cost of executing a piece of code 3.92

Our 15 interviewees have varied job roles and experience.
The interviewees participated in various projects located in the
United States, Canada, Japan, Ireland and Germany. Table III
presents the detailed information of the 15 interviewees (see
Appendix A3 [23]). In the remainder of the paper, we denote
these 15 interviewees as P1 to P15.

3) Data Analysis: We processed the recorded interviews by
following the steps below:
Transcribing and Coding We used a transcription service
provided by a third-party company to transcribe recordings to
transcripts. We then read the transcripts and coded the tran-

3https://goo.gl/56fZNj

scripts. During the coding process, we dropped the sentences
which are not related to coding proficiency or belong to soft
skills4. Finally, we generated a total of 805 cards for the coded
sentences - 16 to 24 cards for each interview.
Open Card Sorting We performed open card sorting [24] to
categorize generated cards for thematic similarity.
Iteration 1: We randomly chose 20% of the cards, and dis-
cussed the themes in these cards. The themes that emerged
during the sorting were not chosen beforehand. The resulting
initial classification scheme contains 34 coding proficiency
skills as shown in Table I (except S7, S24, S27, and S28).
Iteration 2: Two authors independently categorized the re-
maining 80% cards into the initial classification scheme. They
left 79 cards that cannot be categorized to be discussed later.
After discussing the themes in the left cards, 4 more coding
proficiency skills emerged, i.e., S7, S24, S27, and S28 in
Table I. Two authors then separately categorized the left
cards. We use Cohen’s Kappa [25] to measure the agreement
between the two labelers. The overall Kappa value was 0.83,
which indicates strong agreement between the labelers. After
completing the labeling process, the two labelers discussed
their disagreements to reach a common decision. Finally, we
get 38 coding proficiency skills grouped into 9 categories as
shown in Table I.

B. Survey
1) Protocol: We designed a survey to rate the 38 skills

based on the perceived importance. To support respondents
from China, we translated our survey to Chinese before
publishing the survey. Our survey consists of three parts:
Part 1: Demographic we asked demographic questions to
understand the respondents’ background (e.g., their number
of years of professional experience).
Part 2: Ratings of skills We then presented the skills and ask
our respondents to rate each of them with one of the following
ratings: very important, important, neutral, unimportant, very
unimportant. A respondent can also specify that he/she prefers
not answer or don’t understand a particular skill. We included
this option to reduce the possibility of respondents to provide
arbitrary answers.
Part 3: Rationales for each respondent, we randomly sampled
two skills that he/she has rated as important/very important,
and another two skills that he/she has rated as unimportan-
t/very unimportant, and asked the rationales of their ratings5.

2) Respondent Selection: We aim to get a sufficient num-
ber of software practitioners from diverse backgrounds. We
followed a multi-pronged strategy to recruit respondents:

4During our interview, our interviewees also mentioned soft skills.
However, since our focus is on hard skills, we discarded them during the
card sorting process. We define a skill as soft skill if it is related to personal
characteristics, decision making, teammates, or software product as defined
in Li et al.’s study [1], and not related to coding proficiency.

5Note that we use SurveyGizmo functionality to randomly sample skills
based on those marked as (very) important or (very) unimportant. Due to
SurveyGizmo limitation, it is not possible to include complicated logic. Still,
since the process is random, if two skills have equal likelihood of being
selected as (very) important or (very) unimportant, they should have equal
chance to be selected for respondents to provide their rationales.

• We contacted professionals from various countries and IT
companies and asked their help to disseminate our survey to
some of their colleagues and friends. We sent emails to our
contacts in Microsoft, Google, LinkedIn, Box.com, Infosys,
Tata Consultancy Services, Hengtian, IGS, and other small
to large companies from various countries to fill up the
survey and disseminate it. By following this strategy, we
hope to recruit respondents of professional developers in
the industry from diverse organizations and backgrounds.

• We tended to recruit active practitioners in open source
projects in addition to professionals working in industry.
We used GitHub REST APIs to mine the commit logs of
projects hosted on GitHub, and identified contributors with
more than 2,500 commits. In total, we identified 1,588 email
addresses and sent invitations to these addresses. Out of
these emails, 156 were not delivered, 62 received automatic
replies notifying us of the receiver’s absence.

In the email, we emphasized that the respondents should
have experience coding, but the role can vary, i.e., we wel-
comed all software practitioners including developers, tester,
and project managers.

We received a total of 340 responses from 33 countries
across five continents. The top two countries where the re-
spondents reside are China and the United States.

The professional experience of our respondents varies from
0.4 years to 20 years, with an average of 7.36 years. For the
open source practitioners, we sent 1,588 emails and got 196
response (return rate = 12%). For the industrial professionals,
it is hard to estimate return rate. This is because we personally
invited our industry contacts to participate and distribute
survey to some colleagues. We cannot know the exact number
of colleagues to whom they distribute the survey.

3) Data Analysis: We collate the ratings that our respon-
dents provide. We drop “I don’t understand” and “I prefer not
to answer” ratings that form a small minority of all ratings.
Next, we convert these ratings to Likert scores from 1 (very
unimportant) to 5 (very important). Next, we compute the
average Likert score of each skill. Furthermore, we extract
comments that our survey respondents give to explain the
reason why they think a particular skill is important/very
important or unimportant/very unimportant.

IV. RESULTS

In this section, we describe how software practitioners rated
the 38 coding proficiency skills grouped into nine categories,
along with the rationales that our respondents provided to
support their ratings. We consider three research questions:

• RQ1: How do practitioners perceive the 38 derived coding
proficiency skills?

• RQ2: What are the highly ranked coding proficiency skills
as practitioners deem important?

• RQ3: What are the practitioners’ rationales for perceiving
a particular coding proficiency skill important or unimpor-
tant?

272
171

101 63

142 67

46
14

11
32

18 7

22 11
32

2 12 8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

All (340) OS (196) Prof (144) ExpLow (86) ExpMed (172) ExpHigh (82)

Dev Test PM

Fig. 1: Survey respondents demographics. The number indi-
cates the count of each demographic group.

A. RQ1: Importance of the 38 Skills

Table I presents the average Likert score of the 38 skills
from all respondents in the third column. We observe that 21
out of the 38 skills have an average Likert score above 4.0,
indicating that the 21 skills are perceived as important and
very important by our respondents.

We further investigate the ratings of various demographic
groups as below:
• Main job role: Respondents who are developers (Dev),

testers (Test) or project managers (PM).
• Experience level: Respondents with low experience (Ex-

pLow), i,e., we define as the 25% with the least experience
in years; with medium experience (ExpMed); or with most
experience (ExpHigh), i..e, we define as the 25% with the
most experience in years.

• Education level: Respondents with/without advanced de-
grees (Adv/NonAdv).

• Open source developers vs. professionals: Respondents
who are open source developers (OS) or professionals
(Prof).

The grouping of respondents on experience follows prior work,
e.g., Carver et al. [26] and Lo et al. [27]. Same demographic
categories are also used by previous studies [14], [15], [26]–
[31]. We notice that PMs might work as developers before;
Tester might require coding skills as well. In our survey, we
emphasize that our respondents should have coding experi-
ence. Figure 1 presents the distributions of respondents across
different demographic groups:
• Majority of the respondents (80%) are developers, 14% and

6% of the respondents are testers and PMs, respectively.
• More developers and less PMs come from open source

projects, as compared to the respondents from commercial
projects, e.g., 32 PMs are from commercial projects while
only 11 PMs are from open source software project.

• As respondent’s experience increases, the percentage of
testers decreases, while the percentage of PMs increases.
Figure 2 shows the importance ratings of the 38 coding

proficiency skills across various demographic groups. We
observe that all demographics give more “Very Important”
and “Important” ratings as compared to “Unimportant” or
“Very Unimportant”. Only a minority gave “Unimportant”
and “Very Unimportant” ratings (less than 15%) across all
demographic groups. More than 70% respondents across all
demographic groups rated the 38 coding proficiency skills

Fig. 2: Importance of the 38 coding proficiency skills to
respondents of various demographic categories.

as “Very Important” or “Important”, and around 28% - 39%
across all demographic groups rated the 38 coding proficiency
skills as “Very Important”. In addition, we observe a few
differences between various demographic groups (the differ-
ences are significant by using Fisher’s Exact test [32] with
Bonferroni correction [33] at a 95% confidence level):
• Testers consider coding proficiency skills more important

than developers and project managers.
• Low-experience practitioners consider these coding profi-

ciency skills more important than practitioners with medium
and high experience.

• Professional developers perceive coding proficiency skills
more important than open-source developers.

• Respondents with advanced degrees consider coding profi-
ciency skills more important than their counterparts without
advanced degrees.

B. RQ2: Highly Ranked Skills

To further analyze the results, we applied Scott-Knott Effect
Size Difference (ESD) test [34] to group the 38 skills into
statistically distinct ranks according to their Likert scores. Note
that we excluded 5 responses that select “I don’t know” for
our Scott-Knott DSD test. As shown in Tantithamthavorn et
al.’s study [34], the Scott-Knott test assumed that the data
is normally distributed, which might create groups that are
trivially different from one another. To address the limitations
of Scott-Knott test, Tantithamthavorn et al. proposed the
Scott-Knott Effect Size Difference (ESD) test to correct the
non-normal distribution of an input dataset, and leverage a
hierarchical clustering to partition the set of treatment means
(in our case: means of Likert scores) into statistically distinct
groups with non-negligible effect sizes.

Table II presents the 38 skills as ranked according to the
Scott-Knott ESD test in terms of means of Likert scores for
all the respondents. In addition, we identify and discuss high
rated coding proficiency skills across the various demographic
categories (i.e., different job roles and experience levels) in
Appendix B [23].

C. RQ3: Rationales

In the remainder of the paper, we use !or %to denote
the rationale why respondents perceive a skill as important
or unimportant. We carefully read all the comments from the
respondents, and removed comments which do not describe

TABLE II: Skills as ranked according to the Scott-Knott ESD
test (All respondents).

Group Skill
1 S18: break down a complex coding task into smaller tasks

S30: work with a version control system
S19: implement functionality following a modular design
S5: write code that embeds well with code written by others
S33: locate and fix bugs fast and accurately
S17: recognize mismatches between requirement and implementation
S16: implement a functionality correctly according to the requirement
S14: refactor code by identifying and eliminating code and architecture smells

2 S13: reuse suitable third party libraries
S12: reuse code created internally
S34: write good unit test cases to detect potential bugs
S10: recognize and extract reusable code from a larger code base
S11: package, document and distribute a software library

3 S22, S26, S3, S23, S35, S25, S1, S36
4 S38, S24, S31, S37, S21
5 S20, S32, S29, S6, S4
6 S15, S8, S28
7 S9: master big data infrastructure

8 S27: work with multiple IDEs

9 S7: master legacy programming languages

any rationale. For each skill, the first two authors manually
extracted key phrases from the comments, and grouped com-
ments based on the key phrases. Take two comments in S7 for
example, “Not widely used anymore in many large projects”
and “The majority of programming jobs won’t involve these
at all” both express that legacy programming languages are
not widely used. Thus, we put them into one group. Note that
some comments may belong to multiple groups because they
listed more than one reasons. We broke these comments down
and put into multiple groups.

We present the comments on the most highly ranked skills
(Group 1 in Table II), and that on the most lowly ranked skills
(Group 7–9 in Table II). Additionally, we list comments for
selected skills whose importance is controversial in nature (i.e.,
receiving close number of positive and negative comments).
For the complete list of the comments on 38 skills, please refer
to Appendix C [23].

1) Most Highly Ranked Skills (Group 1 in Table II):
Break Down a Complex Coding Task into Smaller Tasks
(S18). Respondents consider S18 as important since it: (1)
helps developers to solve complex problems, (2) allows devel-
opers to create reusable and maintainable code, (3) supports
effective distribution of tasks among team members, and (4)
makes quality assurance checks (e.g., creation of unit tests,
code review, etc.) easier.
! “The more complex problem is it is harder to implement, breaking it into

smaller tasks helps others focus on the implementation. ”
! “Because if you don’t you will end up with an unmaintainable mess.”
! “This is necessary for unit testing, as well as dividing work among a

team.”

Work with a Version Control System (S30). Respondents
consider S30 as important since version control systems:
(1) support team work, (2) facilitate reusability by tracking
reusable versions of a program, and (3) allow developers to
revert to older versions when latest versions are problematic.
! “This is fundamental to the ability of people to work in a team, writing

code together.”

! “Different versions of projects might correspond to different requirements
from different clients, which improves the reusability.”

! “If problems appear in a new version, version control system can trace
back to a right older version.”

Implement Functionality Following a Modular Design
(S19). Respondents explained that modular design (1) helps
create understandable, reusable and maintainable code, and
(2) supports collaboration among developers.
! “Keeping things separated as much as possible helps improve readability

of the code ... ”
! “Modular design contributes to the collaboration between developers,

and it is easier to share work in big teams.”

Write Code that Embeds Well with Others’ Code in
a Large Project Team (S5). Respondents describe well-
embedded code as an important skill: (1) most software
projects are challenging enough to require team work, (2)
software maintenance requires one to build upon existing code
often written by others, and (3) novice developers have little
experience working in a large project.
! “... Without being able to work with other, a lot of time will be lost to

finish a project.”
! “ If I’m going to hire someone, they need to know how to do maintenance

programming and their code should work with the team’s code.”
! “It is important to all developers especially for junior developers, since

they are lack of experience on working in a large project team.”
Note that low-experience respondents list this skill as the most
important skill.
Locate and Fix Bugs Fast and Accurately (S33). Due to
the complexity of software systems, bugs are inevitable, and
bug localization and fixing are two of the most important
activities during software development and maintenance [35]–
[37]. Respondents noted that (1) software quality is crucial,
and (2) others may depend on a piece of code a developer is
fixing:
! “It doesn’t matter how quickly your code runs if it does the wrong thing.”
! “... all new code that you write will slow down your entire team as others

will have to find and fix your bugs for you.”

Recognize Mismatches Between Requirement and Imple-
mentation (S17). Respondents state that: (1) developing the
right thing considering various subtleties of a requirement is
challenging and yet crucial, and (2) detecting mismatches early
prevents wastage of time and resources:
! “Someone who does not understand the subtleties of a requirement, and is

satisfied with an approximate implementation is a burden. On the other
hand, someone who can consistently understand requirements precisely,
and provide matching implementations can be an amazing asset to a
team.”

! “Because if there is a mismatch the contract is void and the implementa-
tion needs to be completed correctly. It was a waste of time and effort.”

Implement a Functionality Correctly According to Re-
quirement (S16). Respondents consider S16 as important
since it is one of the most important metric to evaluate project
success:
! “That is why we are implementing the software, and will make the product

successful. At the end of the day it is the ultimate goal of the profession.”

In contrast, some argue that ability to collect valid requirement
is even more important:
% “Actually it is more important to first confirm that the requirement is

valid and useful. ”

We notice high-experience respondents rank S16 in Group 3.

Refactor Code by Identifying and Eliminating Code and
Architecture Smells (S14). Code refactoring is one of the hot
topics in software engineering [38]–[40]. The purpose of code
refactoring is to eliminate code and architecture smells [41]–
[43] from systems to make them robust for future change and
decrease maintenance cost.

Respondents explain that (1) smells are common and often
introduced due to tight software schedule, (2) it allows devel-
opers to improve software design, and (3) it allows developers
to payoff technical debts and create maintainable code:
! “More often than not, people say they’re doing it ”quick” as prototype

but don’t even see half the problems they’ve introduced. ”
! “You need to be able to understand the deficiencies in designs; in real

life you don’t want to hit a screw with a hammer, why would you do it in
code?”

! “Beginner programmers can write tons of bad code quickly. They need
to learn how to pay down technical debt, otherwise it can kill a projects
long term momentum.”

2) Most Lowly Ranked Skills (Group 7 – 9 in Table II):

Master Legacy Programming Languages (S7). All respon-
dents consider S7 as unimportant. The rationales include (1)
majority of programming jobs do not require the mastery of
legacy programming languages, (2) many new technologies
are introduced and time and effort are needed to acquire
competencies of those new technologies, and (3) learning
legacy languages may not help in improving one’s skill in
newer technologies:
% “It’s rare that that comes up in my work. It’s a niche case that, where it

matters, is important, but not part of most developers’ careers.”
% “it would be waste of time to learn antiquated language, it’s better to

spend time learning something new.”
% “Mastering a dead language might be fun, but it probably won’t

contribute to your success as much as mastering a current language.”

Work with Multiple IDEs (S27). Detractors point at that (1)
good developers do not need multiple IDEs and can work even
with simple text editors, (2) IDEs may be in the way when
coding in multiple programming languages, and (3) learning
a new IDE may require substantial time investment.
% “All best coders I’ve seen (and I believe it’s a rule in general) are perfectly

fine with simple text editor, e.g. notepad. ”
% “IDEs are just helpers and good tools for uni-language programmers. For

polyglots programmer it is often something in the way. Generally using
emacs or vim is preferred. ”

% ‘Any IDE will work and stick with one would be better because learning
IDE can also take time.”

Proponents argue on the value of using the best IDE for a job:
! “When working with different projects or languages, the preferred IDE

can be different.”
Note that low-experience respondents perceive this skill as the
second most unimportant coding proficiency skill.

Master Big Data Infrastructure (S9). Respondents consider
explain that (1) there are not many big data projects, and most
of important development tasks are not ’big data’ things, and
(2) understanding the principle of how to run code efficiently
is more important:
% “This is context specific. So in some jobs this might be important, but it’s

not essential to being a good software developer at all. .”
% “It’s important to have an understanding of the cost of running your

code and how it scales. But it’s not perse necessary to have knowledge
of big data infrastructures, that’s a quite specific a niche. .”

3) Selected Controversial Skills (Group 2 – 6 in Table II):
Complete Coding Task in Short Time (S1). Respondents
consider S1 as important since (1) it is a basic skill to acquire,
(2) project schedule is tight, (3) it allows developers to have
more time to test code, and (4) it allows one to learn more
things by completing more projects:
! “The project schedule is always tight, we have to clear a coding task in

a short amount of time.”
! “Having more time to test the code, to reduce the bugs.”
! “Writing faster means you can do more experiments, which means you’ll

learn faster.”
Nonetheless, some respondents believe that emphasis should
be put on producing good design and writing good code. This
may require more upfront investment in time, but benefit in
the long run. Hastily written code may have many bugs. Other
respondents work on the projects with flexible schedule:
% “We should spend some time on designing before we write the code.”
% “My open source projects are developed on free time, so it is not

important how much it takes.”

Write Well-Documented Code (S3). Respondents consider
well-documented code important because (1) it promotes
reuse, (2) promotes inclusion of newcomers, (3) helps in
program evolution tasks.
! “Without documentation the code has no value and can not be reused by

others.”
! “Well documented code is essential for project maintenance, inclusion of

newcomers, and the projects with high turnover rate.”
! “The code written needs to be understandable for other team members to

be able to modify or adapt later down the timeline or in cases where the
developer is no longer active on the project.”

However, not everyone regards S3 as an important skill
because they believe developers should write simple, self-
explaining and clearly structured code.
% “Documentation doesn’t matter much, as long as it (the code) is clearly

structured and the developers are able to talk about it.”

Master Multiple Programming Languages (S6). Proponents
note that (1) multiple languages expand the view of problems,
and help collaborate with developers across a broad range of
projects, (2) new programming languages are introduced over
time, and (3) different programming languages have their own
strengths and weaknesses.
! “This helps a developer look at a problem from different perspectives,

and understand other developer perspectives”
! “The technology is changing and what used to be COBOL, C, C++ is

moving to golang, rust, node (javascript) ... ”
! “Different languages have their own strengths and weaknesses as well

as problem domains they are good at. ”
On the other hand, others consider it as unimportant because
programming languages are similar, and deep mastery of one
language may matter more to get a job.
% “Much programming knowledge is general. For example, if you are

proficient with Java you should be able to apply these skills to C# as
it is a very similar language.”

% “The opposite is really true, these days - mastery of one language - and
one popular framework within a language is the best way to get a job,
and it’s where the most effective programmers tend to be.”

Interestingly, many practitioners hold negative opinions on
mastery of multiple languages, while the balance tilts towards
viewing S6 as important.
Master Popular Programming Languages (S8). Supporters
argue that popular languages can serve as lingua franca that

connects practitioners, and one needs to master these to remain
relevant in the job market.
! “It’s always good, when talking about something specific to go back to

something more general, something everyone knows. ”.
! “If you don’t, your work will not be relevant.”
Others hold an opposite view arguing that popular languages
may not be best languages for various problems. One should be
able to pick an appropriate language given a specific problem
rather than being swayed to popular languages.
% “Popular languages are not necessarily good languages. What languages

one should use depends on situation. Popularity has little to do with the
usefulness.”

% “... you need have the correct language for the current problem, no the
popular one. Languages are just tools to express your idea.”

Extract an Abstraction or a Model from a Requirement
(e.g., UML) (S15). Supporters state that UML separates
developers from coders, helps in planning and ensuring that the
end product matches requirements, works as a communication
tool among developers, and helps newcomers to get started.
! “Because this ability separates developers from coders ...”
! “If we don’t have a model, when we write code for some period (e.g., two

months), we may forget what the original purposes of the code.”
! “UML can be used as a tool for communication purpose, and help

newcomers to understand the project.”
Ho-Quang et al. also found that collaboration and communi-
cation is the most important motivation to use UML, and the
use of UML can help new contributors to get started, but there
is no evidence that the use of UML can help to attract new
contributors [44].

However, a substantial population of our respondents hold
an opposite opinion: (1) they do not find UML useful, (2)
many experts do not use UML, (3) open source developers
do not prefer to be constrained by model, and (4) software
requirements change often.
% “I’ve not found UML diagrams to be useful for anything but filler in

giant specification documents.”
% “I’ve never known anyone who I have respected that uses UML format.

For example, Donald Knuth, Ken Thompson (Unix/Go), ... These are high-
profile names, but just about anyone I’ve worked with has never used
UML.”

% “Opensource developers usually do what they like (or love) to do. They
love imaging and creating. There is no point in telling them what to code
so precisely ... ”

% “Requirements change all the time, and only as soon as you implement
it you see all consequences and come across unexpected side effects. It’s
better not to overthink requirements. ”

Implement Functionality Following Design Patterns (S20).
Proponents argue that design patterns give the code additional
structure to make it easy to understand and communicate, and
help the improve the ability to apply abstract design ideas to
concrete code implementations.
! “Design patterns give the code additional structure that makes it easier

to understand and to communicate.”
! “ Relying on these patterns indicates a depth of knowledge and ability to

apply abstract design ideas to concrete code implementations.”

In contrast, detractors state that: (1) writing understandable
code does not necessarily need design patterns, (2) they mostly
apply to OO (object-oriented) languages, which have conflict
with other good coding practices, (3) being overly pattern
driven leads to overly abstract solutions, (4) design patterns
are often improperly used and become to anti-patterns, and (5)
design patterns make code hard to understand and maintain.

% “Code should be obvious. Design patterns are a tool which can help, not
an end.”

% “Patterns tend to be routed in certain paradigms, say OO. They also tend
to fall out of other good coding practices.”

% “Being overly pattern driven trends to lead to overly abstract solutions
... ”

% “For the most part, design patterns are now followed slavishly and became
anti patterns. I don’t WANT to have AbstractFactoryFactoryGenerator
classes in my codebase.”

% “Sometime the code optimized by using design patterns are hard to
understand and maintain ... ”

Implement Functionality Avoiding Design Anti-patterns
(S21). Proponents argue that avoiding anti-patterns (1) helps
avoid common mistakes, (2) makes code easy to understand,
and (3) helps avoid overcomplicate solutions.
! “Shows proficiency with different kinds of problems and understanding of

what mistakes are common. To avoid running into design problems later
on when working on a bigger project.”

! “... Bad patterns lead to unmaintainable code, hard-to-find and hard-
to-fix bugs, and make it difficult to scale a developer team to work on
multiple parts of the codebase.”

! “Design patterns do not solve everything, and people tend to overcom-
plicate solutions with them when there are simpler solutions that don’t
necessarily have a name.”

On the other hand, detractors are more pragmatic and opine.
They argue that what matters more is getting work done rather
than actively caring for anti-patterns.
% “I think that the goal of code is to get work done, not to be perfect.

Avoiding an anti-pattern makes sense, but sometimes it’s ok to do those
things to get the job done.”

Understand Existing Code in a Short Period of Time (S22).
Proponents mention that understanding code (1) is needed
by developers when interacting with existing systems, (2) is
important for code review, (3) allows developers to identify
reuse opportunities, and (4) help get up to speed quickly when
joining a new team or helping out in a new task.
! “More often than not developers will be faced with interacting with

existing systems.”
! “In open source we review peers code a lot ... This provides another

developers philosophy of their design. ”
! “If they take too much time to understand the code, either they may take

far too much time to write their own (and be quickly discouraged) or they
may miss useful piece of code that could save them a lot of time.”

! “For newcomers, if they can understand the code quickly, they will join
the development or bug fix task fast. ”

Detractors state that “good things take time” and rushing
through things may not result in good comprehension.
% “Most projects are complicated, and take a long time to get to know

intimately. Being able to understand patterns in projects, and eventually
fully comprehend them, is more important than picking them up in a short
period of time. Good things take time.”

Write Good Unit Test Cases to Detect Potential Bugs
(S34). Proponents argue that unit tests can serve as good
documentation and communicate intent, and prevent regression
bugs.
! “Using code to validate code tends to help with communicating intent,

and maintaining that documentation over time .”
! “Because tests are critical to prevent regression bugs.”
Detractors view unit tests require much time to create and
maintain with little return, and some view other forms of
testing to be more important.
% “Usually unit tests take lots of time with no or small return. They require

lots of maintenance and usually influence on module design. ”

% “Unit tests, ... fail to detect structural (inter-unit) misdesigns and give a
false sense of security.”

Write Good Integration Test Cases to Detect Potential Bugs
(S35). Proponents argue that integration tests (1) are valuable
to ensure that code changes do not introduce adverse impact
with high degree of confidence, and (2) help simulate what a
user may do and detect problems early.
! “Excellent integration tests are the proof of writing code for the right

purpose, and also enable very fast refactorings with high degrees of
confidence.”

! “The ability to write the integration test cases, is more a capability to
spot potential issues by imagining what a user would do ... ”

A minority of respondents hold a negative opinion since inte-
gration tests may not be suitable for some software projects.
% “Most of the software I write is not well suited to typical testing methods.

Integration tests are as far as I go and even that only occasionally.”

Estimate Well the Effort Needed to Implement a New
Functionality (S37). Supporters state that (1) estimation helps
in planning - a software engineer can also attract others to join
his/her effort if estimation works well, (2) good understanding
of a problem is an essential first step towards creating a good
solution, and (3) estimation helps determine project feasibility.
! “So you can plan better. If estimate well, a software engineer can also

attract others to join his/her effort (especially in open source development
setting)”

! “It’s important to understand a problem before attempting to implement
it, but prototype development can be an important part of the learning
process.”

! “Because it allows you to make accurate guesses / estimations on the
feasibility (and chance for a successful implementation) of (requested)
new features. ”

Detractors note that estimation are often inaccurate; Many
software engineers do not care about estimates.
% “Estimates are unlikely to bear much relationship to reality. Try it and

see.”

V. DISCUSSION

A. Implications

1) For Researchers: Skill Measurement, Impact Anal-
ysis, and Automated Tutoring Our work highlights the
skills that are perceived important by our respondents. As
a next step, future research could develop measurements to
operationalize these skills. Such measurements can be defined
based on artifacts that a software engineer has created, GitHub
profile, CV, and a set of tests or questionnaires. One can then
investigate how accurate such measurements are against for
example peer assessments or self-declarations. Such measure-
ments can also help managers (assess software engineers),
educators (assess students), software engineers and students
(assess themselves and make improvements). It would also be
highly interesting to investigate the impact of varying different
skills to the project outcomes or project teams. Furthermore,
it would be worthwhile to develop automated tutoring tools
to help software engineers improve their coding proficiency
skills.
UML 3.0 Looking at ratings and comments that we receive
for S15, we note a substantial push back on modelling among
our respondents. Numerous respondents find UML diagrams,
which often require much time to create, to be not useful

for their work, especially due to the high rate of require-
ment changes. Many prefer writing code than drawing UML
diagrams. This poses a challenge as well as an opportunity
for researchers to create a new modelling technique that is
easy to use by practitioners, can deal with the high rate of
requirement changes, and can be nicely linked with source
code that developers write.
Our findings are consistent with Petre’s [45]. Petre investigated
developers from 50 companies, and 35 of them did not use
UML at all. Moreover, Ho-Quang et al. found that collabora-
tion and communication is the most important motivation to
use UML [44]; thus, would be interesting to investigate how
to build even more effective models that can be adopted more
widely to communicate various pieces of information.
Design Patterns: Validation, New Patterns, and Rec-
ommendation Systems Similar to modelling, a substantial
number of our respondents push back on design patterns.
Detractors argue that design patterns mostly apply for OO,
which can be improperly or overly used. This leads to very
abstract solutions impairing understanding, may conflict with
other good practices, and many good patterns are not listed as
design patterns. This may give opportunities to researchers to:
(1) validate claims made by developers through a controlled
experiment or field study, or by looking into historical data
stored in software repositories (e.g., by correlating design
pattern use and number of bugs, etc.), (2) create or curate addi-
tional design patterns that apply to many different languages
beyond OO languages by interviewing practitioners for best
practices, or by mining software repositories, (3) design tools
that can give advice on design pattern misuse and recommend
suitable actions to make applying design patterns a net benefit.
Our findings are consistent with prior studies [46]–[48]. Jaafar
et al. investigated the relationship between design patterns and
faults by performing an empirical study on six design patterns
and 10 anti-patterns in ArgoUML, JFreeChart, and XercesJ,
and they found classes which have dependencies with anti-
patterns are more fault-prone than others [46]. Wendorff et
al. [47] investigated the misuse of design pattern in a large
industrial project, and he found that developers misuse design
patterns since (1) they do not understand the rationale behind
the patterns, or (2) the implementation does not match the
project requirement. Scanniello et al. setup four controlled
experiments with 88 participants to investigate the relationship
between design patterns and program comprehension, and
they found that documenting design-pattern instances can help
to improve the efficiency of source code understanding for
respondents with adequate level of experience [48].

2) For Educators: Twenty one skills are rated as 4 (im-
portant) or above by the majority of our survey respondents.
We make the following recommendations based on high-rated
skills and our respondent comments:
General Coding Skills Educators should emphasize on abili-
ties to code efficiently, write efficient code, document well, and
embed one’s code well to other’s code. “Document well” is
often less emphasized in standard computer science curriculum
but it is highly valued by practitioners. Also, note that, as

compared to the above skills, advanced topics like parallel
programming receive less support from our respondents.
Programming Language and Infrastructure Educators
should put less emphasis on specific programming languages
but more on programming paradigms.
Refactoring and Reuse The skills under this category are
highly valued by our respondents. Thus, educators should em-
phasize more on these skills, e.g., recognizing and extracting
reusable code from a larger code base, and refactoring code
by identifying and eliminating code and architecture smells.
Often these skills are neglected in many standard CS courses
which focus on ability to write code from scratch.
Requirement Engineering and Software Design Educators
should teach more problem solving skills (e.g., divide and
conquer), basic design skills (e.g., modular design), and pro-
vide project-based courses, to help students decompose and
solve complex problems, write well-modularized program, and
train students to implement requirements correctly and detect
mismatches. These skills are highly valued by practitioners.
Note that basic design skills (e.g., modular design) are more
valued by our respondents than skills that are often viewed as
more advanced (e.g., UML modeling and design patterns).
Understanding and Learning Educators should put more
emphasis on program comprehension skills, and ability to
appreciate trade-offs. The earlier is often lacking in many
basic CS courses as students are often not exposed to read and
understand large amount of code. Educators can also introduce
more domain concepts which go beyond traditional CS. For
example, they can encourage students to take classes on spe-
cialized domains (e.g., accountancy and finance). Moreover,
educators should train students on acquiring new skills and
tools fast, i.e., the ability of learning to learn. These skills are
highly valued by practitioners.
Interacting with Environments Educators should at least
introduce version control systems which receive a much higher
rating than other development tools.
Bug Prevention and Fixing Educators should put emphasis
on debugging and testing skills as they are highly valued by
practitioners.

3) For Practitioners: Many practitioners are often not clear
on how to improve their coding proficiency [3]. Our findings
conclude a number of skills that our respondents aspire to
achieve. The average ratings of all skills except one are above
3.0, all except five are above 3.5, and 21 skills are above
4.0. We also provide rationales on why each skill is perceived
as important or not. For many skills, our respondents have
different opinions, and we highlight all sides of the argument
to help practitioners decide upon which set of skills to improve
based on their circumstances.
Besides, our findings may help practitioners better present
themselves to prospective employers. For the skills that ex-
perienced practitioners value, practitioners can demonstrate to
prospective employers that they have or can develop these
skills. On the other side of the coin, managers and recruiters
could identify suitable candidates by checking their proficien-

cy on the listed skills, especially those that are marked as
important or very important by many practitioners.
B. Threats to Validity

Construct Validity. Our interviewees come from three compa-
nies. Projects done in these companies cover a wide range of
domains. Developers working there have also worked in other
companies. However, they may not be representative of all
developers. To mitigate this potential bias, we have carefully
chosen questions and topics for the interviews, and performed
a survey that involve a large population of developers from
various companies around the world. Our survey respondents
complete the survey based on their belief and perception. It is
possible that they conflate the skills that are very important and
the skills that are very relevant to their projects or industrial
contexts. To mitigate this threat, we have tried to survey many
people; a total of 340 practitioners from various companies in
33 countries across 5 continents participated.
Internal Validity. It is possible that some of our survey
respondents do not understand some of the 38 skills well. To
reduce this threat to validity, we provide “I don’t understand
/ I prefer not to answer” option in our survey, and we find
that the number of respondents who choose this option to
be small (2.3%). We also translate our survey to Chinese to
ensure that respondents from China can understand our survey
well. It is also possible that we draw wrong conclusions about
respondents’ perceptions from their comments. To minimize
this threat, we read transcripts many times, and checked the
survey results and the corresponding comments several times.

The selection of skills produced at the end of the inter-
view may not be comprehensive and may be biased to the
background of experts – who may not be able to articulate
their own skills, focus more on skills that involve public
demonstrations, and who may praise skills that have no actual
benefit to performance – whom we interviewed. To mitigate
this bias, we have taken the following steps:
• Aside from asking direct questions of what skills they deem

important, we also ask them to discuss topics that they
have not explicitly mentioned. The topics were selected
from software engineering text books online resources; they
include: bug fixing, program comprehension, programming
language, implementation, testing, tool usage, and others.

• We have performed a survey to check whether the in-
terviewees’ opinion is perceived to be correct by many
practitioners.

External Validity. To improve the generalizability of our find-
ings, we have interviewed 15 respondents from 3 companies,
and surveyed 340 respondents from 33 countries across 5
continents working for various companies (including Mi-
crosoft, Google, LinkedIn, Box.com, Infosys, Tata Consultan-
cy Services, Hengtian, IGS and other various small to large
companies) or contributing to open source projects hosted on
GitHub. Still, our findings may not generalize to represent the
perception of all software engineers. For example, most of the
respondents are from Asia, North America, and Europe, and
there are only two respondents from South America, and none

of the respondents are from Africa. Moreover, considering
most of the users on GitHub are male, our findings might
not be generalized to female developers. In the future, it
would be interesting to perform another study to investigate
how female developers perceive coding proficiency. Moreover,
each respondent rates each skill, thus each skill receives 340
responses. This is substantial considering prior studies include
similar number of respondents (i.e., 357 [14], 364 [49], and
512 [27] respondents) to rate many statements (i.e., 23 [14],
28 [49], and 571 [27] statements).

Another threat related to the completeness of our 38 coding
proficiency skills. In this paper, we finalized these skills based
on the open-ended interviews of 15 interviewees. Also, in the
end of our survey, we also asked the respondents to provide the
additional coding proficiency skills. Among the 340 responses,
144 respondents provided comments for additional skills. We
also manually analyze these additional skills, and removed
76 comments which are related to soft skills (e.g., “good
working behavior”, “effective communication”, and “the key
is good communication and social skills”), general skills for
all engineers (e.g., “understanding of grammar and math”), or
noises (e.g., “N/A”, “yes”, or “no”). Next, we applied closed
card sorting to categorize the remaining 68 comments, i.e.,
we tried to categorize them into the 38 skills, and we left the
comments which belong to none of these skills. We notice
most of the comments provided supplementary explanation to
our 38 skills, e.g., “ability to pick the right level of abstraction”
is an explanation for S15 (extract an abstraction or a model
from a requirement), “rapid prototyping” is an explanation
for S1 (write code efficiently). Moreover, we only found two
additional skills that are not covered by our survey, i.e., “write
awesome SQL”, and “use of (agile) methodologies like Scrum,
Kanban or GTD”. This threat could be removed by including
these two skills, and inviting more respondents.

VI. CONCLUSION AND FUTURE WORK

In this work, we survey 340 practitioners from diverse back-
grounds on their perceptions of coding proficiency. We derive a
total of 38 skills which are grouped into 9 categories from our
interviews, and ask survey respondents to rate the importance
of these skills and provide the rationales of the ratings. We
find that all but 1 of the skills receive an average rating of
more than 3.0 (neutral), all but 5 receive an average rating
of more than 3.5 (between neutral and important), and 21
receive an average rating of 4.0 and above (important and very
important). Our findings can help practitioners by highlighting
important skills to acquire, and educators by recommending
important skills to include in the curriculum. The findings also
highlight opportunities that software engineering researchers
can work on to better help practitioners in their tasks. Future
work could work on some of these opportunities and expand
our study to address some of the threats to validity.
Acknowledgement: This research was partially supported by
the National Key Research and Development Program of Chi-
na (2018YFB1003904) and NSFC Program (No. 61602403).
Replication package: https://goo.gl/qXCMSm

REFERENCES

[1] P. L. Li, A. J. Ko, and J. Zhu, “What makes a great software engineer?”
in 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, 2015, pp. 700–
710.

[2] R. E. Kelley, “How to be a star engineer,” Spectrum, IEEE, vol. 36,
no. 10, pp. 51–58, 1999.

[3] A. Begel and B. Simon, “Novice software developers, all over again,”
in Proceedings of the Fourth international Workshop on Computing
Education Research. ACM, 2008, pp. 3–14.

[4] M. Hewner and M. Guzdial, “What game developers look for in a new
graduate: interviews and surveys at one game company,” in Proceedings
of the 41st ACM technical symposium on Computer science education.
ACM, 2010, pp. 275–279.

[5] J. Bishop, R. N. Horspool, T. Xie, N. Tillmann, and J. de Halleux, “Code
hunt: Experience with coding contests at scale,” in 37th IEEE/ACM In-
ternational Conference on Software Engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, Volume 2, 2015, pp. 398–407.

[6] N. Tillmann, J. de Halleux, T. Xie, and J. Bishop, “Pex4fun: A web-
based environment for educational gaming via automated test genera-
tion,” in 2013 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2013, Silicon Valley, CA, USA, November
11-15, 2013, 2013, pp. 730–733.

[7] A. Aziz, T.-H. Lee, and A. Prakash, Elements of Programming Inter-
views: The Insiders’ Guide. CreateSpace, 2012.

[8] J. Mongan, N. Kindler, and E. Giguere, Programming Interviews Ex-
posed: Secrets to Landing Your Next Job (2nd ed.). Wrox, 2007.

[9] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective
developers investigate source code: An exploratory study,” Software
Engineering, IEEE Transactions on, vol. 30, no. 12, pp. 889–903, 2004.

[10] T. C. Lethbridge, “A survey of the relevance of computer science and
software engineering education,” in Software Engineering Education,
1998. Proceedings., 11th Conference on. IEEE, 1998, pp. 56–66.

[11] T. DeMarco and T. Lister, “Programmer performance and the effects
of the workplace,” in Proceedings of the 8th international conference
on Software engineering. IEEE Computer Society Press, 1985, pp.
268–272.

[12] J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove, “Improving
speed and productivity of software development: a global survey of
software developers,” Software Engineering, IEEE Transactions on,
vol. 22, no. 12, pp. 875–885, 1996.

[13] B. W. Boehm, “Improving software productivity,” in Computer. Cite-
seer, 1987.

[14] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 19–29.

[15] C. Treude, F. Figueira Filho, and U. Kulesza, “Summarizing and
measuring development activity,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM, 2015, pp.
625–636.

[16] Z. Karimi, A. Baraani-Dastjerdi, N. Ghasem-Aghaee, and S. Wagner,
“Links between the personalities, styles and performance in computer
programming,” Journal of Systems and Software, vol. 111, pp. 228–241,
2016.

[17] R. S. Pressman, Software engineering: a practitioner’s approach. Pal-
grave Macmillan, 2005.

[18] J. Bentley, Programming Pearls, 2/E. Pearson Education India, 2000.
[19] Quora, “What skills are required to be proficient at coding,” https://www.

quora.com/What-skills-are-required-to-be-proficient-at-coding, 2017.
[20] Stackechange, “As a student, how should programming language fa-

miliarity be described on a cv/resume,” http://workplace.stackexchange.
com/questions/1209/ , 2017.

[21] IGS, “Insigma Global Service,” http://www.insigmaservice.com/ , 2017.
[22] Hengtian, “Hengtian,” http://www.hengtiansoft.com/ , 2017.
[23] “How practitioners perceive coding proficiency: Appendix,” https://goo.

gl/56fZNj, 2018.
[24] D. Spencer, Card sorting: Designing usable categories. Rosenfeld

Media, 2009.
[25] J. Cohen, “A coefficient of agreement for nominal scales,” Educational

and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.
[26] J. C. Carver, O. Dieste, N. A. Kraft, D. Lo, and T. Zimmermann, “How

practitioners perceive the relevance of esem research,” in Proceedings

of the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2016, p. 56.

[27] D. Lo, N. Nagappan, and T. Zimmermann, “How practitioners perceive
the relevance of software engineering research,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 2015, pp. 415–425.

[28] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and
T. Zimmermann, “Quantifying developers’ adoption of security tools,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 260–271.

[29] E. K. Smith, C. Bird, and T. Zimmermann, “Build it yourself!: home-
grown tools in a large software company,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 369–379.

[30] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
design space of bug fixes and how developers navigate it,” IEEE
Transactions on Software Engineering, vol. 41, no. 1, pp. 65–81, 2015.

[31] P. Devanbu, T. Zimmermann, and C. Bird, “Belief & evidence in
empirical software engineering,” in Proceedings of the 38th international
conference on software engineering. ACM, 2016, pp. 108–119.

[32] R. A. Fisher, “On the interpretation of χ 2 from contingency tables, and
the calculation of p,” Journal of the Royal Statistical Society, vol. 85,
no. 1, pp. 87–94, 1922.

[33] R. A. Armstrong, “When to use the bonferroni correction,” Ophthalmic
and Physiological Optics, vol. 34, no. 5, pp. 502–508, 2014.

[34] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“An Empirical Comparison of Model Validation Techniques for Defect
Prediction Model,” IEEE Transactions on Software Engineering (TSE),
2016.

[35] D. Lo, X. Xia et al., “Fusion fault localizers,” in Proceedings of
the 29th ACM/IEEE international conference on Automated software
engineering. ACM, 2014, pp. 127–138.

[36] H. Cleve and A. Zeller, “Locating causes of program failures,” in
Software Engineering, 2005. ICSE 2005. Proceedings. 27th International
Conference on. IEEE, 2005, pp. 342–351.

[37] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?-
more accurate information retrieval-based bug localization based on
bug reports,” in Proceedings of the 34th International Conference on
Software Engineering. IEEE Press, 2012, pp. 14–24.

[38] M. Fowler, Refactoring: improving the design of existing code. Pearson
Education India, 2009.

[39] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: a review of current
knowledge,” Journal of Software Maintenance and Evolution: research
and practice, vol. 23, no. 3, pp. 179–202, 2011.

[40] N. Meng, L. Hua, M. Kim, and K. S. McKinley, “Does automated
refactoring obviate systematic editing?” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 392–402.

[41] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lu-
cia, and D. Poshyvanyk, “When and why your code starts to smell
bad,” in Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 2015, pp. 403–414.

[42] J. Padilha, J. Pereira, E. Figueiredo, J. Almeida, A. Garcia, and
C. Sant’Anna, “On the effectiveness of concern metrics to detect code
smells: An empirical study,” in International Conference on Advanced
Information Systems Engineering. Springer, 2014, pp. 656–671.

[43] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, vol. 41, no. 5, pp. 462–489, 2015.

[44] T. Ho-Quang, R. Hebig, G. Robles, M. R. Chaudron, and M. A.
Fernandez, “Practices and perceptions of uml use in open source
projects,” in Proceedings of the 39th International Conference on
Software Engineering: Software Engineering in Practice Track. IEEE
Press, 2017, pp. 203–212.

[45] M. Petre, “Uml in practice,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013, pp. 722–731.

[46] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, F. Khomh, and M. Zulkernine,
“Evaluating the impact of design pattern and anti-pattern dependencies
on changes and faults,” Empirical Software Engineering, vol. 21, no. 3,
pp. 896–931, 2016.

[47] P. Wendorff, “Assessment of design patterns during software reengi-
neering: Lessons learned from a large commercial project,” in Software
Maintenance and Reengineering, 2001. Fifth European Conference on.
IEEE, 2001, pp. 77–84.

[48] G. Scanniello, C. Gravino, M. Risi, G. Tortora, and G. Dodero, “Doc-
umenting design-pattern instances: a family of experiments on source-
code comprehensibility,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, no. 3, p. 14, 2015.

[49] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys, ankle
sprains, and keepers of quality: how is video game development different
from software development?” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 1–11.

