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Abstract—Testing is an indispensable part of software de-
velopment efforts. It helps to improve the quality of software
systems by finding bugs and errors during development and
deployment. Huge amount of resources are spent on testing
efforts. However, to what extent are they used in practice?
In this study, we investigate the adoption of testing in open
source projects. We study more than 20,000 non-trivial software
projects and explore the correlation of test cases with various
project development characteristics including: project size,
development team size, number of bugs, number of bug
reporters, and the programming languages of these projects.
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I. INTRODUCTION

Software testing is an important part of software devel-

opment life-cycle. Despite the availability of various tools

to ensure quality of software through testing, most software

products suffer from insufficient testing. The impact of inad-

equate testing can consist of a substantial number of unhan-

dled failures, which leads to poor quality of software, higher

software development costs and delays in time to market

the product. A study conducted by the National Institute of

Standards and Technology reported that inadequate software

testing costs the U.S economy $59.5 billions annually, i.e.,

about 0.6% of its GDP [34]. The number of bugs uncovered

after the code has been shipped can overwhelm projects

developers when software is not thoroughly tested. Thus,

a triager from Mozilla project admitted that they receive

almost 300 bugs everyday that need triaging [1]. These

figures reinforces the fact that software testing is paramount

for developing bug free software.

Software testing is used to verify that the program or

system under test produces the desired output based on

the set of inputs and execution environment, which are

specified in the requirements document. As the complexity

of software increases, detecting all software bugs is practi-

cally impossible, thus, making complete testing infeasible.

In the past, several studies have explored different software

testing strategies and techniques to address these challenges

and propose methods to perform exhaustive testing of soft-

ware [2], [7], [14], [15].

Although a large body of research about software testing

has been built, software programs continue to suffer from

numerous defects. Consequently, is software testing really

popular in development projects? Does it noticeably impact

the quality of software code? What kind of projects are

more likely to include tests? These are some of the im-

portant questions which can increase our understanding of

the unexplored areas of software testing and its impact on

software evolution. Our goal in this paper is indeed to fill a

research gap in the importance of software testing through

a large-scale empirical evaluation.

In this study, we analyse a large number of open source

projects from the GitHub hosting site. GitHub platform holds

millions of software projects including important projects

such as Linux and Ruby on Rails. GitHub provides various

features which makes it an important platform for storing

open source projects. GitHub also provides an in-house issue

tracking system where users record issues and classify them

as bugs, feature requests, and other self-defined categories.

We investigate in this study different characteristics of soft-

ware development that are related to testing: e.g., numbers of

developers in projects that include test cases. We also study

how the presence/absence of test cases can affect the quality

of software in terms of the number of reported bugs. Finally,

we investigate the programming languages in relation to the

projects with test cases.

We examine the following research questions:
RQ1: How many projects have test cases?
RQ2: Does the number of developers affect the number of

test cases present in a project?
RQ3: Does the presence of test cases correlate with the

number of bugs?
RQ4: Does the presence of test cases encourage bug

reporting?
RQ5: Which programming languages appear to have more

test cases?
The contributions of this paper are as follows:

1) We are the first to perform a large-scale empirical

study on the adoption of software testing in practice.

Our study involves the analysis of more than 20,000

software projects of sizes ranging from 500 to 17

millions LOC.

2) We examine the relationships between the number of

test cases and various project characteristics. These

include: the size of the projects, the number of the de-

velopers in the projects, the number of bugs, the number

of bug reporters, and the programming languages that

the projects are written in.

3) We employ a number of statistical tests to confirm if the

findings of our experiments are statistically significant.
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This empirical study is an extension of our previous

preliminary work (described in a 4-page ERA (early research

achievement) track paper) [21]. For this project, we curate

the previously collected data to filter toy projects (i.e.

projects of small sizes). Further, we examine three more

research questions in addition to the two questions discussed

in the previous empirical study.

The structure of this paper is as follows. In Section II, we

describe preliminary materials about test cases and GitHub.

Our empirical study methodology is presented in Section III.

Next, we present the result of our experiments that answer

a number of research questions in Section IV. We highlight

several threats to validity in Section V. Related work is

described in Section VI. Section VII concludes and describes

future work.

II. PRELIMINARIES

In this section, we mainly discuss the importance of

testing in software development and briefly describe GitHub,

the platform where we have collected the dataset of projects

for our study.

A. Software Testing and Test Cases

Software development produces programs that are often

buggy or incomplete with respect to some features. Software

complexity, (and therefore that of bugs) grows to the limits

of our ability to manage that complexity [3]. To verify that

software is compliant with its requirements, developers often

resort to software testing. As developers go on addressing

previously discovered bugs while simultaneously adding new

features, they produce complex software containing subtler

bugs that are more challenging to detect and to handle.

This in turn makes thorough testing tedious but necessary.

Actually, studies have shown that software testing accounts

for 40-70% of the time and cost of the complete software

development process [27]. Unfortunately, although software

testing is a challenging, time consuming and expensive

exercise, it has become a common part of the development

process, as releasing software with inadequate testing may

lead to even higher costs [34].

Exhaustive testing requires, for each functional require-

ment, both a positive test, which evaluates that an applica-

tion produces the expected result, and a negative test that

evaluates the outcome when the application is run under

conditions outside what is defined. It is to be noted however

that the presence of a large number of test cases does not

guarantee that a software program is free from defects.

Developers therefore regularly seek new ways to test their

code more effectively. To this end, they often rely on various

approaches, such as test case prioritization and test case

reduction techniques that have been proposed to reduce time

and cost of software testing [4], [19], [20], [22], [23]. In

this study we focus on examining how the presence/absence

of test cases in a software project correlate with various

characteristics of software development.

B. GitHub

GitHub is a web-based project hosting platform which

was launched in 2008 and has become one of the premier

open source development sites hosting more than 3,000,000

projects. GitHub implements the concept of social coding

to create a developer-friendly environment where develop-

ers are enabled to network, collaborate and promote their

projects.

GitHub, an open source coding repository site allows de-

velopers to create and manage projects. It provides features

such as followers, feeds and network graph for developers

to monitor their repository. GitHub provides an open source

wiki engine gollum which is backed by Git and provides

plethora of text formats.

Most of GitHub project repositories are publicly accessi-

ble and can be retrieved through an extensive set of REST

APIs [9]. GitHub hosts diverse types of projects from various

application domains, from gaming software, web applets, to

operating systems. The code in the projects are also written

in a myriad of programming languages by development

teams ranging from 1 to several thousand developers. This

variety of project instances makes GitHub an appealing

source to collect data for empirical studies.

Although our study is on the test cases in software

projects, we also collect information about other develop-

ment artifacts in order to estimate the correlations between

test cases and a number of software characteristics. We have

thus collected huge amounts of data from GitHub through

its API and processed raw program code data to extract

information such as numbers of lines of code and test cases,

which are not directly available through the GitHub API.

III. METHODOLOGY

For our empirical study, we analyse projects downloaded

using the GitHub API. GitHub does not follow a distinct

ordering scheme to download the projects. Thus, the results

vary every time with a new request. To ensure that most of

the projects are non toy projects in our dataset, we filtered

the data and selected the projects which have more than

500 lines of code (LOC). We have in total 20,817 projects

of sizes 500 to 17 millions LOC. These include well-known

projects such as Ruby on Rails and jQuery.

A. Collecting the dataset

a) Lines of code: GitHub uses the git software configura-

tion management system (SCM) to store software revisions.

We cloned the git repositories of the projects and used the

SLOCCount1 utility to count the lines of code of the latest

revisions of these projects. Figure 1 shows the lines of code

of different projects. We observe that 40% of our projects

have LOC between 1,000 and 5,000. Around 27% of the

projects lie between 500 to 1,000 LOC , while more than

1http://dwheeler.com/sloccount
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23% of the projects have more than 10,000 lines of code.

Also, over 15,000 projects (total 20,817 projects) have more

than 1,000 LOC.

Figure 1. Distribution of Projects in Terms of Total Lines of Code

b) Test Cases: Test cases are an important part of a project

as they help developers confirm whether their code meets

the requirement laid down for the software. Collection of

test cases for large number of projects is an arduous task

as different languages follow different naming conventions.

We perform a lightweight identification of test cases that can

scale to thousands of projects. We notice that most test cases

contain the word “test” as part of their file names. Thus we

select files whose name contains the word “test”. For each

project, we then count the number of such files which are

treated as the number of test cases. We then investigate the

relationships between the number of test cases and various

project characteristics.

c) Issues & Bugs: GitHub has its own issue tracking

system which provides issue trackers for each hosted project

where reporters can file issue tickets, and label them with

different tags. We collect all the issues (open and close)

reported through the in-house tracker. We further find infor-

mation such as reporter’s identity and different labels used

to report the issues. In our dataset, issues are labelled as

enhancement, bug, feature requests, error, fixed etc. Further,

we find the issues labelled as bugs, errors or defects because

they most likely represent the actual bugs in the project. We

also calculate the number of bug reporters in a project, i.e.,

people who reported issues for the project.

d) Developer contributions: Git records store contributors

name and email for each revision of the repository. There are

two types of contributors: committers and revision authors.

Committers have access to main repository and commit the

code contributions from revision authors. These revision

authors are the end contributors of the code. We calculate

the number of developers (i.e., revision authors) for each

project and examine the impact of the number of developers

on the presence of test cases.

B. Research questions

We examine five research questions which pertains to the

importance of software testing in software development. We

collect several software metrics to investigate correlations

between them, which can contribute towards improvement of

software testing process and overall software development.

We are thus interested in analyzing the following research

questions:

RQ1: How many projects have test cases? Testing is a

crucial activity in the life-cycle of software development

process. Testing is used to detect the conditions under which

a program may fail and provides directions to rectify that

problem. Investigating test cases in a project is important as

we wish to know whether projects are properly tested or not.

Although presence of test cases does not ensure that project

is bug free, but it can help developers analyse the defects

and provide motivation to remove those bugs.

In this research question, we examine the prevalence of

test cases in open source projects. We analyse the projects

containing test cases to investigate whether test cases com-

mensurate with the lines of code of the project.

RQ2: Does the number of developers affect the number
of test cases present in a project? Developers are the people

who are main contributors of the project. They analyse

requirements, prepare documents, write code and finally

test the code. Usually, developers write unit test cases to

test their individual modules or functions as they have

better knowledge about the product or application they are

developing. They are the best people to write white box tests

as they can develop multiple test cases to extensively test

the application. Our dataset consist of both small and big

projects where numbers of developers vary from as small as

1 to several thousands collectively working on the project.

Thus, we investigate the correlation between the number

of developers working on a project and the number of test

cases available for the project.

RQ3: Does the presence of test cases correlate with the
number of bugs? A bug manifests itself as an error, failure

or fault which can seriously affect the functionality of a

program. The main objective of running test cases is to

detect bugs in the application and find ways to fix it. Test

cases can help us to find as many bugs as possible, thus,

improving the efficacy of testing. Test cases can be created

by analysing the bugs which can be further used to create

regression test suite.

In this question, we investigate the correlation between

the bug count and the number of test cases. We wish to

examine whether presence of test cases has an effect on the

bug count.

RQ4: Does the presence of test cases encourage bug
reporting? Bug reports are the documents which contain

details about the bugs in the program. Bug reports increases

the chances of removing bugs from the software. Bug reports

are also called as fault reports, problem reports, change

requests etc. When a developer or tester runs test cases and

find bugs, they can log this information in a bug report. Bug

reports and test results can be used to analyse the quality of
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software.

In this research question, we examine, indirectly, whether

the presence of test cases persuades users to run these

test cases and report bugs. To this end, we determine the

correlation between number of test cases and number of bug

reporters, i.e., people who report bugs.

RQ5: Which programming languages appear to have
more test cases? Our dataset consists of 20,817 projects

written in different languages. Some people prefer writing

code using their favourite language. Although we randomly

selected our projects, we still want to determine if people

prefer writing test cases in some particular programming

language. Some of the programming languages provide unit

test framework which supports writing and running of test

cases. So, we investigate whether number of test cases

depends upon the popularity of programming languages.

C. Statistical measurements

To the best of our knowledge, this is the first study

which explores relationship of test cases with different

characteristics of the project on such a large scale. We

use common metrics in statistical analysis to confirm the

existence of a correlation among the data and for examining

the statistical significance of our figures.

a) The Mann-Whitney-Wilcoxon (MWW) test: The MWW

test is a non-parametric statistical hypothesis test to assess

the statistical significance of the difference between the

distributions in two datasets [24]. As this test does not

assume any specific distribution, we use it for our project as

we collected data from different open source projects which

might not be normally distributed. Given two independent

samples x and y, of size n1 and n2 respectively, the MWW

test allows us to evaluate whether these distributions are

identical. The test first combines and arranges the data points

of the two samples in ascending order of their values. Data

points with identical values are assigned a rank equal to the

average position of those scores in the ordered sequence.

Second, the algorithm sums the ranks of data points in the

first sample (x). Let us denote this sum as T. The formula

for computing the Mann-Whitney U for x is :

U = n1n2 +
n1(n1 + 1)

2
− T

The U value calculated above is used to determine the

p-value. Given a significance level α = 0.05, if p-value <
α, then the test rejects the null hypothesis. This implies that

at the significance level of α = 0.05, the two datasets have

different distributions.

b) Spearman’s rho: Spearman’s rho (ρ), also known as

Spearman’s rank correlation coefficient, is a non-parametric

measure used to assess statistical dependence between two

variables X and Y using a monotonic function. This measure

can be used when data is not normally distributed. Thus,

making it a good fit for the datasets that we investigate in

this study. The values of ρ are limited to the interval [-1;

1]. A perfect Spearman correlation of -1 or +1 occurs when

each variable is a perfect monotone function of the other.

The closer to 0 ρ is, the more independent the variables are.

Equation 2 states the formula for finding this coefficient.

ρ =

∑n
i=1(xi − x)(yi − y)

√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

In this equation, xi and yi represent the ranks of elements

Xi and Yi in X and Y respectively, while x and y represent

the averages of the ranks.

IV. EMPIRICAL EVALUATION

In this section, we examine the research questions and

report the results of our empirical study.

A. RQ1: Popularity of Test Cases

To answer this research question, we tabulate the number

of test cases in the projects. Table I shows the distribution

of test cases in the projects. After curation, our dataset

includes 20,817 projects of significant size, out of which

7,982 projects do not contain test cases, which represents

38.34% of the total projects. The remaining 61.65% of the

projects contain one or more test cases. In total, we have

1,875,409 test cases from 12,835 projects in our dataset. We

examine how presence/absence of test cases correlate with

other characteristics of the projects such as lines of code

(LOC).

Table I
TEST CASES DISTRIBUTION

Projects # of Projects % of Projects
Without Test Cases 7,982 38.34%
With Test Cases 12,835 61.65%

Table II details the prevalence of test cases: 84.87% of the

projects have less than 100 test cases. 10.7% of the projects

have between 100 and 500 test cases, whereas less than

4.5% of the projects have more than 500 test cases. Only

17 projects have more than 10,000 test cases. The table also

shows the mean value of the size of the projects. For eg.,

the mean value for the size of 17 projects, which contain

more than 10,000 test cases is 2,568,813.82 LOC.

Table II
PREVALENCE OF TEST CASES

# of Test Cases # of Projects % of Projects Mean (LOC)
with Test Cases

1-9 6,195 48.26% 12,813.55
10-49 3,769 29.36% 24,681.08
50-99 931 7.25% 47,610.31

100-249 964 7.51% 901,447.06
250-499 410 3.19% 193,629.08
500-999 303 2.36% 197,660.48

1000-4999 219 1.70% 397,159.98
5000-9999 27 0.21% 701,281.66
> 10000 17 0.13% 2,568,813.82
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We believe that bigger projects have higher test cases due

to large number of functionalities that needs to be tested

to produce a high quality software. So, we examine the

correlation between the number of test cases in a project

to the corresponding number of lines of code.

Figure 2. Test Cases and Lines of Code

Figure 2 2 shows the distribution of project sizes (in terms

of LOC) for projects with and without test cases. We observe

that projects with test cases have an average of 107,096

LOC (median=3549) whereas average of projects without

test cases is 5,605 LOC (median=1353). We compare the

LOC numbers of the set of projects with test cases and that

of those without test cases using Mann-Whitney-Wilcoxon

(MWW) test. Our results show that the difference between

these two sets is statistically significant with p-value < 2.2

e−16 3. Thus, we can conclude that projects with test cases

are bigger in size than the projects without test cases.

To verify that projects with test cases have higher LOC,

we analyse the correlation between the number of LOC

and the number of test cases. Figure 3 shows the scatter

plot between the number of LOC and the number of test

cases. The graph shows that there is positive correlation

between these two metrics. To confirm this correlation, we

use Spearman’s rho which gave a value of 0.427 with p-

value < 2.2 e−16 4. The result validates that there is a

positive correlation between the number of test cases and

the number of LOC.

Although correlation between the number of test cases

and the number of LOC is positive, we wish to examine

the correlation between the number of lines of code and

2The line in the middle of the box represents the median. The upper
part of the box represents the upper quartile, while the lower part of the
box represents the lower quartile. The lines on top and below the box are
referred to as whiskers. Data points above and below these whiskers are
regarded as outliers – data points which are significantly different from the
majority of the data points.

3Here, lines of code is the dependent variable and the presence/absence
of test cases is the independent variable. The null hypothesis is: there is
no difference in the size of projects with test cases and those without test
cases. The alternative hypothesis is: projects with test cases have more LOC
than those without test cases. We consider a significance level α=0.05. For
this α value, if the p-value < 0.05, we reject the null hypothesis.

4Null hypothesis (rho is zero) is rejected

Figure 3. Correlation between Test Cases and Lines of Code

the number of test cases per LOC. Here, we only consider

projects with test cases and divide the number of test cases

by the corresponding LOC of that project. Figure 4 depicts

the correlation between these two variables. We can observe

that with an increase in the number of LOC, we see a

decrease in the number of tests per LOC. The Spearman’s

rho for the distribution is -0.451 with p-value < 2.2 e−16,

which confirms that there is a negative correlation between

the lines of code and the number of test cases per LOC.

Figure 4. Correlation between Test Cases per LOC and Lines of Code

Eighty five percent of the projects have less than 100 test
cases. Projects with test cases are bigger in size than projects
without test cases. However, the number of test cases per
LOC decreases with increasing LOC.

B. RQ2: Developers and Test Cases

Developers form an important part of the project as they

contribute by writing/modifying code, developing test cases,

running them and solving bugs logged in bug tracking

system. So, finding a correlation between the numbers of

developers and the numbers of test cases is important to

understand the impact of these developers on the presence

of test cases. Our dataset consists of 20,817 projects which

contain a total of 2,916,105 developers who have contributed

to the code bases of the projects. The projects with test cases

have 2,861,031 developers whereas the projects without test

cases have 55,074 developers. Thus, projects with test cases
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have a higher numbers of developers. We can observe from

Figure 5 that projects with test cases have more develop-

ers. We used MWW test between the set of numbers of

developers of projects with test cases and those for projects

without test cases which gave p-value < 2.2e−16 5. The

results signify that the difference between these two sets is

statistically significant.

Figure 5. Number of Developers in Projects with/without Test Cases

We wish to examine whether increase in the number of

developers leads to an increase in the number of test cases

in that project. We use scatter plot (Figure 6) to examine

the correlation between the numbers of developers and the

numbers of test cases. We calculated Spearman’s rho to

confirm the correlation between these two variables which

gave a value of 0.207 (p-value < 2.2 e−16). This suggests

that there is a weak positive correlation between the number

of developers and test cases.

Figure 6. Test Cases and Number of Developers

We further investigate the average number of test cases

contributed by each developer. For each project, we divide

the total number of test cases by the corresponding number

of developers in that project. Figure 7 depicts the correlation

5Here, number of developers is the dependent variable and the pres-
ence/absence of test cases is the independent variable. The null hypothesis
is: there is no difference in the number of developers of projects with test
cases and those without test cases. The alternative hypothesis is: projects
with test cases have more developers than those without test cases. We
consider a significance level α=0.05. For this α value, if the p-value <
0.05, we reject the null hypothesis.

between the numbers of developers and the numbers of test

cases per developer. We use Spearman’s rho to find the

correlation between these two variables. The Spearman’s

value is -0.444 with p-value < 2.2 e−16. Thus, the cor-

relation between the number of developers and the number

of test cases per developer is negative. As only some of the

developers write test cases, we observe a decrease in the

test count per developer with an increase in the number of

developers.

Figure 7. Correlation between # of Test Cases per Developer and # of
Developers

The number of test cases increases when there are more
developers in a project. However, the number of test cases per
developer decreases for the projects with more developers.

C. RQ3: Test Cases and Bug Counts

In this research question we examine whether the number

of bugs is correlated with the number of test cases present

within a project. First, we identify the issue reports present

in our dataset. GitHub provides an issue tracking system

which lets users file issue tickets, tag them according to the

issue and label them as the state of the issue changes. It

also allows the project development team to either enable or

disable the issue tracking system. Users can tag issues and

categorize them. However, user-supplied tags can create a

problem for developers as there can be typographical errors

while tagging. Since tags are not predetermined by GitHub,

a tag can be reported in different forms. For example, a

bug can be tagged as defect, type:bug, bugfix, etc. Table III

depicts several representations of tags which we count as

bugs for our project.

Table III
TAGS REPRESENTING BUGS

bug bug; T bug; Bug Confirmed; bugs; starter bug; bug fix etc.
defect defect; Type-Defect; minor defect
error error; Wow error; build error; error page; user error etc.

Since errors can be represented by any combination of

these tags, we use these tags to account for all the bugs.

In total, we have 1,081 projects which contain 24,703 bugs
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as represented by the tags mentioned above. These projects

contain 83,576 test cases written by the project development

teams.

Our aim is to study and see that with increase in the

number of test cases, bug count increases. Figure 8 shows

a scatter plot to explore the correlation between the number

of bugs and the number of test cases. Here, we can see that

as the number of test cases increases, we see an increase

in the number of bugs. We calculated the Spearman’s

correlation which yields rho value 0.181 (p-value = 1.78

e−09), suggesting a weak correlation between the number

of test cases and the number of bugs.

Figure 8. Correlation between # of Test Cases and # of Bugs

Projects having higher numbers of test cases observe an
increase in the number of bugs, although the correlation is
weak between them.

D. RQ4: Test Cases and Bug Reporters

We wish to know if the presence/absence of test cases

affects bug reporting. We examine the relationship between

the number of test cases and the number of bug reporters.

Bug reporters are the people who report or log bugs related

to a particular application or software. Based on the user

names, we collected the data about people who have reported

issues in the project. As not all the projects contain issues,

we identified 6,230 projects in which users logged issues.

These issues were filed by 274,276 reporters.

Figure 9. Test Cases and Bug Reporters

We can observe from the Figure 9 that projects with test

cases have higher number of bug reporters (median=5) as

compared to projects without test cases (median=3). We

performed the MWW test and found that the difference

between the set of bug reporters in projects without test

cases and those of projects with test cases is statistically

significant (p-value < 2.2 e−16). We can infer that if test

cases are present, it can persuade users to run these test

cases and if they found bugs, they can log them in issue

tracking systems.

Figure 10 shows the scatter plot of the numbers of bug

reporters and the numbers of test cases. We computed

Spearman’s rho for the distribution which yielded the value

0.171 (p-value < 2.2 e−16), suggesting a weak dependence

between the number of test cases and the number of bug

reporters.

Figure 10. Correlation between # of Bug Reporters and # of Test Cases

There is weak correlation between the number of test cases
and the number of bug reporters.

E. RQ5: Test Cases and Programming Languages

With this research question, we attempt to establish

whether projects written in common languages such as C#,

Java, PHP or JavaScript, contain more number of test cases

than other languages. We first compute the number of test

cases present in projects depending on the programming

language that is used. We then select projects developed in

the top ten languages with the highest number of test cases.

Figure 11 shows the number of projects of the corre-

sponding top ten languages in our dataset. Out of 20,817

projects in our dataset, 19,327 projects use one of these top

ten languages. During the analysis, we find out that Java has

3,112 number of projects and also the highest count among

all the projects. Our dataset contains 3,016, 2,902 and 2,536

projects written in ruby, PHP and Python respectively. Perl

has the lowest number of projects among the projects written

in the computed top ten languages. C++ has the highest

number of test cases being 648,773 present in 1,920 projects.

Then, we have projects written in ANSI C, PHP and Java

having respective count of 286,009, 255,553 and 196,703
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test cases. Perl has lowest number of test cases, i.e., 7,690

present in 630 projects.

Figure 11. Count of Projects and Different Languages

Figure 12 shows the distribution of the number of tests of

top-10 languages that are used in the projects of our dataset.

We observe that median values of some of the pairs such as

C# and Ruby, Python and Java, ANSI C and PHP, Objective-

C and Perl are almost comparable to each other. JavaScript

has a median value of 4 test cases, 1 less than the median

value of C# and Ruby.

Figure 12. Prevalence of Test Cases for Common Languages

As most of the projects have lower number of test cases,

we can observe that median line is gravitating towards the

left, i.e, data is skewed towards the right. The rest of the

projects having higher number of test cases are considered

as outliers as they are small in number and does not have a

significant impact on the box plots6. Thus, we can observe

a big difference in the mean and median values for all the

languages.

We further analyze the number of test cases per project.

Table IV depicts the mean number of test cases per project

for each language. We observe that C++ has the highest

value, i.e., 337.90, whereas Perl has the lowest value among

all the top ten languages. JavaScript projects has higher

number of test cases per project than Python and Objective-

C projects. Although the numbers of projects written in C++,

6https://github.com/isis-project/WebKit having 166488 test cases and
https://github.com/chrispilot2293/CM9 having 44871 test cases

ANSI C and PHP are less as compared to the numbers of

projects written in Java and Ruby, they have higher mean

numbers of test cases per project.

Table IV
DISTRIBUTION OF TEST CASES PER PROJECT

Language # of Projects # of Test Cases Test Cases/Project
C++ 1,920 648,773 337.90

ANSI C 2,197 286,009 130.18
PHP 2,902 255,553 88.06
C# 1,042 81,334 78.05

Java 3,112 196,703 63.20
Ruby 3,016 173,864 57.64

JavaScript 819 39,070 47.70
Python 2,536 103,600 40.85

Objective-C 1,153 21,343 18.51
Perl 630 7,690 12.20

Projects written in popular languages, such as C++, ANSI
C, and PHP, have higher mean numbers of test cases per
project.

V. THREATS TO VALIDITY

We now describe some threats to validity that we have

identified in the course of this study.
External validity is related to the generalizability of our

results. Although our dataset consists of over twenty thou-

sand projects, the results may not represent all real world

projects. Also, our study is conducted on GitHub, which is

one of the biggest repository for open source projects. So,

the results may differ for closed source projects. To the best

of our knowledge, GitHub hosts projects from myriad of

areas and we selected the projects randomly.
Threats to internal validity refers to whether an experi-

mental condition makes a difference or not. Data quality is

one of biggest threat here. We have tried to ensure quality

of our dataset by examining that we take the proper count

of number of test cases for all projects. We use heuristics

to detect test files, i.e., we consider the files whose name

contains test. This might not identify all test files whose

name does not have word test and conversely, detect some

files whose name contain the word test but actually are not

test files. In order to scale to a large number of projects, we

need to take these heuristics. We have manually checked and

counted the test cases for some of the projects to validate our

results. For counting bugs we had to take into account all of

the labels that can be marked as bugs such as defects, error,

bugfix etc. Since GitHub does not provide set of labels to be

marked as bugs or defects, users are free to mark labels in

any fashion suitable to them. Different labels were identified

through a painstaking review of projects and characterizing

labels into different categories. Still there is possibility that

we may have wrongly identified some of the labels as bugs

which may not be actual bugs. For multi-language projects,

we consider only the dominant language, i.e., the language

with the highest number of lines of code in a project.
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VI. RELATED WORK

In the following section, we highlight studies on open

source software projects, empirical studies on testing, and

other large scale studies.

A. Studies on Open Source Software Projects

Open source software projects has received enormous

attention from industry as well as the research community in

the last several years. Pham et al. discuss several strategies

to understand the testing culture on social coding sites such

as GitHub. They also present some guidelines which can be

used by developers and managers to influence the testing

behavior in their projects [28]. Dabbish et al. examine open

social software repository namely GitHub, to understand

the value of transparency for large-scale distributed collab-

orations and communities of practice [13]. Crowston et al.

analyse the social structure of Free/Libre and Open Source

Software (FLOSS) by examining the communication pat-

terns used in bug tracking systems [10]. Their results shows

that FLOSS projects cannot be characterised into particular

pattern of communications centralization or decentralization.

Roberts et al. develop a model to understand motivations,

participation, and performance of open source software

developers [29]. They validate their model using data col-

lected from Apache projects. Bird examine the relation-

ship between developers in large open source projects [5].

They use source code repository histories, communication

and coordination data from mailing lists, and bug tracking

databases to understand the relationship between participants

social and development behavior and the social structure

that exists between them. Crowston et al. use coordination

theory to analyse free/libre open source software (FLOSS)

development projects [12]. They also compare these results

with the existing literature on coordination in proprietary

software development and found several similarities and dif-

ferences in the coordination mechanisms used in the project.

Sowe et al. investigate knowledge sharing activities between

the knowledge providers and knowledge seekers using the

Developer and User mailing lists of Free/Open Source

Software (F/OSS) project, namely Debian [30]. Crowston et

al. analyze the structure and coordination practices used by

development teams during bug fixing practices in free/libre

open source software (FLOSS) [11].

Michlmayr et al. perform exploratory interviews on

open source developers to gain an insight into quality

practices and quality problems particular to free software

projects [26]. Krogh et al. develop an inductive theory of the

open source software (OSS) innovation process to analyse

why new people join existing developer community [37].

Zanetti et al. use data driven approach to get insight into

sustainability of software development by analysing large

number of open source software projects [39].

We perform large scale study on more than twenty thou-

sand open source projects hosted on GitHub.

B. Empirical Study on Testing

There have been a lot of studies that assess various

aspect of testing. We just highlight some of them here.

Greiler et al. conduct a qualitative study of test practices

followed by a community of people working on plug-

in based applications [17]. Rehman et al. discuss several

software component testing issues and classify set of testing

techniques used when a component is integrated with its

target system [36]. Memon et al. present their analysis to im-

prove the current testing techniques and strategies to create

new collaborative development and testing processes where

developers can share tools and information repositories [25].

Cabral et al. present an analysis of testability issues and

testing techniques for software product lines (SPLs) [8].

Zaidman et al. study the co-evolution between production

code and test code on two open source and one industrial

project [38]. Fraser et al. use search-based software testing

for test data generation for open source projects [16]. They

perform case study on 100 Java projects selected from

SourceForge and give directions for future research. Ceccato

et al. perform an empirical study to analyse the impact of

automatically generated test cases on accuracy and efficiency

of debugging [9]. They compare the effectiveness of debug-

ging between a manually designed test suite and a test suite

generated by Randoop. Their results show that automatically

generated test cases positively affect debugging. Stamelos

et al. conduct an empirical study on open source projects

to understand the implications of structural quality and the

probable benefits of such analysis on software develop-

ment [31].

In this work, we consider a separate research problem

namely on the adoption rate of testing in practice. We

investigate a large number of projects from GitHub.

C. Large Scale Studies

Aside from our work, there have been many past studies

that also perform large scale studies on hundreds and even

thousands of projects. Bissyandé et al. investigate 100,000

projects hosted on GitHub to understand the popularity of

different programming languages [6]. Gruska et al. evaluates

a lightweight anomaly detection technique on a collection

of 6,000 projects [18]. They extract formal rules in the

form of computational tree logic expressions from code

and detect for violations of these expressions. Surian et al.

analyze a snapshot of projects in SourceForge.Net [33]. They

find several patterns of how developers collaborate with

one another in SourceForge.Net. Surian et al. also analyze

projects in SourceForge.Net to build a system to effectively

recommend developers to one another [32]. They perform

random walk with restart over a graph containing links

between developers and projects to realize their proposed

solution. Thung et al. use 100,000 projects from GitHub to

investigate the network structure among these projects [35].
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They show that social coding improves the collaboration

among open-source developers.

VII. CONCLUSION AND FUTURE WORK

Software testing is used to ensure that the software

produced is complete, correct, secure and of higher quality.

Test cases are used to confirm that software meets all

these criteria. We conduct a large scale empirical study

to analyse the prevalence of test cases in open source

projects and the correlations between the test cases and other

important software metrics. We plot graphs to depict these

correlations and use statistical analysis techniques to confirm

the relationships depicted by the graphs.

Our analysis shows the following results:

1) Projects with test cases have more LOC than those

without test cases. As projects grow in size the number

of test cases per LOC decreases.

2) Projects with more number of developers have more

test cases. However as the number of developers grow,

the number of test cases per developer decreases.

3) There is weak positive relationship between number of

test cases and the number of bugs.

4) Number of test cases has a weak correlation with the

number of bug reporters.

5) Projects written in popular languages, such as C++,

ANSI C, and PHP, have higher mean numbers of test

cases per project as compared to projects in other

languages.

In this work, we only consider around 20,000 projects.

We plan to increase the number of projects in a future work.

We also plan to investigate more project characteristics

and analyse their correlation with the number of test cases.

Further, we intend to perform qualitative analysis of test

cases to understand how well test suites cover the code.
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